
Programming Information
(Printed Version of Help)

Agilent Technologies
PNA Series Network Analyzers

Part Number: E8356-90028
Printed in USA
December 2002

Supersedes September 2002

©Copyright 2000–2002 Agilent Technologies

1

COM versus SCPI ...5

Command Finder ..6

PNA Object Model ..17

Obsolete Commands ...18

Application Object ..18

IApplication2 Interface ...52

Collection Methods and Properties ..52

Calibrator Object ..56

ICalibrator2_Interface ..72

ICalibrator3 Interface ...73

CalFactorSegments Collection...73

Cal Set Object..74

ICalSet2 Interface ..90

Cal Sets Collection...90

CalKit Object..90

CalManager Object ..94

ICalManager2 Interface ...97

CalStandard Object..97

ICalStandard Interface ...106

Channel Object ..106

IChannel2 Interface..134

Channels Collection ...134

Gating Object...135

ICalData Interface..138

ICalData2 Interface..144

ICalData3 Interface..146

HWauxIO Object ..147

IHWAuxIO2 Interface ...155

IHWAuxIO3..156

HWExternalTestSetIO Object ..156

HWMaterialHandlerIO Object...160

IArrayTransfer Interface ...165

IArrayTransfer2 Interface ...172

INACustomMeasurement Interface ..178

2

ISourcePowerCalData Interface...180

Limit Test Collection...181

LimitSegment Object..184

Marker Object ..186

Measurements Collection...200

Measurement Object..201

IMeasurement2 Interface ...231

NAWindows Collection...232

NAWindow Object..232

Port Extension Object ..238

PowerLossSegments Collection...240

PowerLossSegment Object..241

PowerSensor Object ..243

PowerSensorCalFactorSegment Object...246

PowerSensors Collection ...246

SCPIStringParser Object ...247

SCPIStringParser2 Interface..248

Segments Collection ..248

Segment Object ...250

SetAllSegments Method...251

ISegments2 Interface...251

SourcePowerCalibrator Object...251

Trace Object ..257

Traces Collection ...259

Transform Object ...259

COM Examples ...262

Learning about COM ..281

SCPI Command Tree ..297

IEEE 488.2 Common Commands ..298

Abort Command...300

Calc:Correction Commands ...301

Calc:Data Commands..304

Calc:Filter Commands ...307

Calc:Format Command..310

Calc:Function Commands..311

3

Calc:Limit Command..314

Calc:Marker Commands ..318

Calc:Math Command ...329

Calc:Normalize Commands ...330

Calc:Parameter Commands...331

Calc:RData Command ...335

Calc:Smoothing Commands ..336

Calc:Transform Commands ...337

Control Commands..342

Display Commands..355

Format Commands ..363

Hardcopy Command..364

Initiate Commands...365

Memory Commands...366

Output Command ..369

Sens:Average Commands ...370

Sense:Bandwidth Command..371

Sense:Correction Commands ..372

Sense:Correction:Collect:CKit Commands...381

Sense:Correction:CSET Commands..392

Sense:Correction:Collect:Guided Commands ..395

Sense:Couple Command...400

Sense:Frequency Commands..401

Sense:Offset Commands...403

Sense:Power Command ..405

Sense:Roscillator Command..406

Sense:Segment Commands ..406

Sense:Sweep Commands..413

Source Commands ..418

Source:Power:Correction Commands..422

Status Register Commands ...429

Status Command Keywords...436

System Commands..438

Trigger Commands ..440

SCPI Examples ...442

4

SCPI Example Programs..442

Learning about SCPI ..467

Rear Panel Connectors ..486

8753 Command Cross Reference..501

Using Macros..575

5

COM versus SCPI

There are two methods you can use to remotely control the analyzer: COM and SCPI. The
following topics are intended to help you choose the method that best meets your needs:
� Software Connection

� Physical Connection

� Selecting a Method

� Programming Languages

Other Topics about COM Concepts

Software Connection
COM uses a binary protocol, allowing the user to directly invoke a feature of the Network
Analyzer. This is more efficient than SCPI. For example, the following statement calls directly into
the Network Analyzer, executing the routine GetIDString.
PNA.GetIDString()
SCPI is a text based instrument language. To retrieve the ID string, you would send the following
text string to the network analyzer:
IbWrite("*IDN?")

The network analyzer’s SCPI parser would first decode this text string to determine that the user
has asked for the network analyzer to identify itself. Then the parser would call GetIDString().

The Physical Connection

Internal Control
With either COM or SCPI, the best throughput is attained by using the analyzer’s internal PC to
execute your test code. However, if your test code uses too much system resources (CPU cycles
and/or memory), this will slow the Analyzer’s performance.
Using the SICL I/O Libraries, you can also connect to the Analyzer from a program running on the
Analyzer.

External Control
You can control the analyzer from a remote PC using either COM or SCPI.
COM - (Component Object Model) can be used to access any program like the analyzer
(835x.exe) or library (.dll) that exposes its features using a COM compliant object model. These
programs or libraries are called "servers". Programs (like your remote program on your PC) that
connect to and use the features of these servers are called "clients."
With COM, the server and the client do not need to reside on the same machine. DCOM, or
distributed COM, is easy to configure and makes the location of the server transparent to the
client. When you access the Analyzer from a remote computer, you are using DCOM. In this
case, the mechanical transport is a LAN (local area network).
SCPI - Using a GPIB interface card in a remote computer, you can connect to the instrument
using a GPIB cable. There are some constraints on the length of this cable and the number of
instruments that can be daisy-chained together.
Using the Agilent SICL I/O libraries, you can connect to the instrument over a LAN connection.
(LAN or INTERNAL) You can send SCPI commands using COM with an object called the
ScpiStringParser. This object provides access to the SCPI parser (or command decoder) so that
you can send SCPI text commands using automation.

Selecting a Method
You should almost always choose COM for the following reasons:

6

• COM executes faster most of the time.
• COM is generally easier to use. The latest development tools embrace COM and know

how to make your life easier with integrated development environments that show
automation syntax as you type.

• As time goes on, more emphasis will be put on the COM as the preferred programming
paradigm. As new capability is developed, it may not be made available through SCPI.

But choosing a connection method depends on your situation. Here are some additional things to
consider:

1. If you want to use the Analyzer to control other GPIB instruments, you may want to use
COM as the means of talking to the instrument. In GPIB, the analyzer can not be
configured as both System Controller and talker/listener. Because the Analyzer does
not support pass control mode, only one mode can be used at a time.

2. If you have legacy code written in SCPI for another network analyzer, you may be able to
leverage that code to control the Analyzer. However, the PNA uses a different platform
than previous Agilent Network Analyzers. Therefore, not all commands have a direct
replacement. See the 8753 command finder.

Programming Languages
You can program the Analyzer with either COM or SCPI using several languages. The most
common include:
Agilent VEE - With this language you can send text based SCPI commands and also use
automation. VEE 6.0 or later is recommended.
Visual Basic - This language has great support for automation objects and can be used to drive
SCPI commands. The use of VISA drivers for your GPIB hardware interface will make the task of
sending SCPI commands easier.
C++ - This language can do it all. It is not as easy to use as the above two, but more flexible.

Command Finder

File Commands
Description SCPI COM
Save States (Inst | Cal | Both) MMEMory:STORe

Recall States (Inst |Cal | Both) MMEMory:LOAD app.recall
Manage Files
List Files MMEMory:CATalog

Copy Files MMEMory:COPY

Move Files MMEMory:MOVE

Delete Files MMEMory:DELete

Manage Folders
Change MMEMory:CDIRectory

Delete MMEMory:RDIRectory

Make MMEMory:MDIRectory

Print
Print HCOPy app.DoPrint
Print to File app.PrintToFile

View Commands
Description SCPI COM

7

Status Bar On|Off DISP:ANN:STAT app.ShowStatusBar
Toolbars On|Off app.ShowToolbar
Tables On|Off DISP:WIND:TABLe win.ShowTable
Title Bars On|Off app.ShowTitleBars
X-axis values On|Off DISP:ANN:FREQ app.ShowStimulus
Marker Readout On|Off DISP:WIND:ANN:MARK:STA

T
win.MarkerReadout

One Readout per Trace DISP:WIND:ANN:MARK:SIN
G

win.OneReadoutPerTrace

Marker Readout Size DISP:WIND:ANN:MARK:SIZ
E

win.MarkerReadoutSize

Measurement Trace On|Off DISP:WIND:TRAC meas.View
Memory Trace On|Off DISP:WIND:TRAC:MEM meas.View
Title Annotation On|Off DISP:WIND:TITL win.TitleState
Make a Title Annotation DISP:WIND:TITL:DATA win.Title
Display Update On|Off DISP:ENAB
Window Update On|Off DISP:WIND:ENABle
Analyzer Visible On|Off app.Visible
Add a Window wins.Add
Return a Window Number win.WindowNumber
Activate a Window app.ActivateWindow
Arrange Measurement
Windows

app.ArrangeWindows

Analyzer Window
 (Max |Min| Normal)

app.WindowState

Display Automation Errors app.DisplayAutomationErrors

Channel Commands
Power | Average | Offset | Manage

Description SCPI COM
Preset app.Preset
Start Freq SENS:FREQ:STAR chan.StartFrequency
Stop Freq SENS:FREQ:STOP chan.StopFrequency
Center Freq SENS:FREQ:CENT chan.CenterFrequency
Span SENS:FREQ:SPAN chan.FrequencySpan
CW Frequency SENS:FREQ:CW chan.CWFrequency
Power Settings
Power ON | OFF OUTP app.SourcePowerState
Power Value SOUR:POW1 chan.TestPortPower
Port Selection SENS:SWE:SRCP chan.TestPortPower
Couple Ports OFF | ON SOUR:POW:COUP chan.CouplePorts
Attenuator Mode Auto|Manual SOUR:POW:ATT:Auto chan.Attenuator
Attenuation Value SOUR:POW:ATT chan.AttenuatorMode
Power Slope Mode Manual |
Auto

SOUR:POW:SLOP:STAT app.PowerSlope

Power Slope Value SOUR:POW:SLOP app.PowerSlope
Receiver Attenuation SENS:POW:ATT chan.ReceiverAttenuator
Averaging

8

Average ON|OFF SENS:AVER chan.Average
Average Factor SENS:AVER:COUN chan.AveragingFactor
Return the Average Count chan.AveragingCount
Average Restart SENS:AVER:CLE chan.AveragingRestart
Frequency Offset
Offset mode ON | OFF SENS:OFFS:STAT chan.FrequencyOffsetState
Offset Frequency SENS:OFFS:OFFS chan.FrequencyOffsetFreque

ncy
Read Offset Start Frequency SENS:OFFS:STAR?
Read Offset Stop Frequency SENS:OFFS:STOP?
Set Offset Multiplier SENS:OFFS:MULT chan.FrequencyOffsetMultipli

er
Set Offset Divisor SENS:OFFS:DIV chan.FrequencyOffsetDivisor
Set CW Override SENS:OFFS:CW chan.FrequencyOffsetCWOv

erride
Test Set Switch ROUT:PATH:LOOP:R1 chan.R1InputPath
Manage Channels
Add chans.Add
Make Active app.ActiveChannel
Read Channel Number chan.ChannelNumber
Read Number of Channels chans.Count
Set up a copy of the Channel chan.CopyToChannel

Sweep Commands
Power | Segment | Trigger
Description SCPI COM
Sweep Time Value SENS:SWE:TIME:AUTO chan.centerFrequency
IF Bandwidth SENS:BWID chan.IFBandwidth
Previous IF Bandwidth chan.Previous_IFBandwidth
Next IFBandwidth chan.Next_IFBandwidth
Number of Points SENS:SWE:POIN chan.NumberOfPoints
Sweep Type (Lin | Pwr | CW |
Seg)

SENS:SWE:TYPE chan.SweepType

Sweep Generation (Stepped |
Analog)

SENS:SWE:GEN chan.SweepGenerationMode

Dwell Time Value SENS:SWE:DWEL chan.DwellTime
Alternate Sweeps SENS:COUP chan.AlternateSweep
External ALC SOUR:POW:DET app.ExternalALC
Power Sweep
Start Power SOUR:POW:STAR chan.StartPower
Stop Power SOUR:POW:STOP chan.StopPower
Center SOUR:POW:CENT
Span SOUR:POW:SPAN
Segment Sweep
ON|OFF SENS:SEGM Seg.State
Add a segment SENS:SEGM:ADD Segs.Add
Delete a segment SENS:SEGM:DEL segments.Remove
Delete all segments SENS:SEGM:DEL:ALL

9

Count the segments SENS:SEGM:COUN chans.Count
Read the segment number seg.SegmentNumber
Segment Center Frequency SENS:SEGM:FREQ:CENT chan.centerFrequency
Segment Frequency Span SENS:SEGM:FREQ:SPAN chan.FrequencySpan
Segment Start Frequency SENS:SEGM:FREQ:STAR Chan.StartFrequency
Segment Stop Frequency SENS:SEGM:FREQ:STOP Chan.StopFrequency
Number of Points SENS:SEGM:SWE:POIN seg.NumberOfPoints
IF Bandwidth SENS:SEGM:BWID seg.IFBandwidth
IF Bandwidth Option SENS:SEGM:BWID:CONT segs.IFBandwidthOption
Source Power SENS:SEGM:POW chan.TestPortPower
Source Power Option SENS:SEGM:POW:CONT segs.SourcePowerOption
X-Axis Point Spacing SENS:SEGM:X:SPAC chan.XAxisPointSpacing
Upload a segment table SetAllSegmernts
Trigger
Source (where trigger comes from)
Trigger Source (Int | Ext |
Manual)

TRIG:SOUR app.TriggerSignal

Internal | Manual INIT:CONT
Trigger! (for Manual Source) INIT app.ManualTrigger
Ext. Trigger Slope (Positive |
Negative)

TRIG:LEV app.TriggerSignal

Trigger Delay TRIG:DEL app.TriggerDelay
Scope (what is triggered)
Trigger Scope (Global |
Channel)

TRIG:SCOP app.TriggerType

Channel Settings (how the channel responds to triggers)
Cont | Groups | Hold SENS:SWE:MODE
Continuous chan.Continuous
Number of Groups SENS:SWE:GRO:COUN chan.NumberOfGroups
Hold chan.Hold
Single chan.Single
Trigger Mode (Point |
Measurement)

SENS:SWE:TRIG:POIN chan.TriggerMode

Restart INIT
Abort ABOR chan.Abort

Calibrate Commands
Guided | ECAL | Save-Recall | Cal Sets | CORR | Modify Kits | Standards | Power Cal | Cal Data

Description SCPI COM
Perform an Unguided
Calibration
Launch Cal Wizard SYSTem:CORR:WIZard app.LaunchCalWizard
Set Cal Type SENS:CORR:COLL:METHod cal.SetCalInfo
Select a Cal Kit SENS:CORR:COLLect:CKIT app.CalKitType
Get a Handle to the Active Cal
Kit

app.ActiveCalKit

Simultaneous 2-Port Calibration SENS:CORR:TSTandards cal.Simultaneous2PortAcquisitio
n

10

Acquisition Direction SENS::CORR:SFORward cal.AcquisitionDirection
Measure a Standard SENS:CORR:COLLect cal.AcquireCalStandard
Calculate Errors SENS:CORR:COLL:SAVE cal.CalculateErrorCoeffecients
Isolation ON|OFF SENS:CORR:ISOLation cal.AcquireCalStandard
Perform a Guided Cal
Initiate a Guided Cal SENS:CORR:COLL:GUID:INIT

List valid Connector Types for a
Port

SENS:CORR:COLL:GUID:CON
N:CAT?

List valid Cal Kits for a Port SENS:CORR:COLL:GUID:CKIT:
PORT:CAT?

Select a Connector Type SENS:CORR:COLL:GUID:CON
N:PORT

Select a Cal Kit SENS:CORR:COLL:GUID:CKIT:
PORT

Return Number of Steps in a Cal SENS:CORR:COLL:GUID:STEP
s?

Return a Description of a Cal
Step

SENS:CORR:COLL:GUID:DESC
?

Measure a Cal Standard in a
Guided Cal

SENS:CORR:COLL:GUID:ACQu
ire

Calculate Error Terms from a
Guided Cal

SENS:CORR:COLL:GUID:SAVE

Perform an ECAL
Do ECAL 1-Port SENS:CORR:COLL:CKIT 99 cal.DoECAL1Port
Do ECAL 2-Port SENS:CORR:COLL:CKIT 99 cal.DoECAL2Port
Get ECAL Module Info SENS:CORR:COLL:CKIT:INF? cal.GetECALModuleInfo
Confidence Check Parameter SENS:CORR:CCH:PAR

Confidence Check Acquire SENS:CORR:CCHeck cal.AcquireCalConfidenceCheck
ECAL

Confidence Check Done SENS:CORR:CCH:DONE cal.DoneCalConfidenceCheckEC
AL

Maps ECAL Module to PNA
Ports

SENS:CORR:PREF:ECAL:PMA
P

cal.ECALPortMap

Perform Module Orientation
during calibration

SENS:CORR:PREF:ECAL:ORI cal.OrientECALModule

Recall / Save / Apply a Calibration or Error Term
Recall a Calibration SENS:CORR:CSET app.Recall
Apply a Calibration to a
measurement

SENS:CORR:CSET

Save a Calibration SENS:CORR:CSET:SAVE app.Save
Save or Recall an Error Term CALC:DATA Scorr Data Topic
Apply an Error Term after
Uploading

SENS:CORR:COLLect:APPLy

Cal Sets
Create a Cal Set calMgr.CreateCalSet

Delete a Cal Set SENS:CORR:CSET:DEL calMgr.DeleteCalSet
List Cal Sets SENS:CORR:CSET:CAT? calMgr.GetCalSetCatalog
Get Cal Set Information calMgr.GetCalSetUsageInfo

Select a Cal Set by GUID SENS:CORR:CSET:GUID calMgr.GetCalSetByGUID
Select a Cal Set from a channel channel.SelectCalSet

Copy a Cal Set CalSet.Copy

Save a Cal Set CalSet.Save

Save Cal Sets SENS:CORR:CSET:SAVE app.SaveCalSets
Change the Description of a Cal
Set

SENS:CORR:CSET:DESC CalSet.Description

Change the Contents of a Cal
Set

calset object

Recall a Cal Set app.Recall

11

Correction Settings
CORR ON|OFF for a
measurement

SENS:CORR meas.ErrorCORR

Interpolation ON|OFF SENS:CORR:INT meas.InterpolateCORR
Extensions ON|OFF SENS:CORR:EXT portExtension.State
Port 1 Extensions Value SENS:CORR:EXT:PORT portExt.Port1
Port 2 Extensions Value SENS:CORR:EXT:PORT portExt.Port2
Receiver A Extensions Value SENS:CORR:EXT:REC portExt.InputA
Receiver B Extensions Value SENS:CORR:EXT:REC portExt.InputB
Relative Velocity SENS:CORR:RVEL:COAX app.VelocityFactor
Modify Cal Kits
Set a Cal Kit Active SENS:CORR:COLL:CKIT app.CalKitType
Get a Handle to the Active Cal
Kit

app.ActiveCalKit

Save All Cal Kits after Modifying app.SaveKits

Load (Recall) All Cal Kits app.RecallKits

Restore Cal Kit Default SENS:CORR:COLL:CKIT:RESet app.RestoreCalKitDefaults
Restore ALL Cal Kits Default app.RestoreCalKitDefaultsAll

Build a Hybrid Cal Kit app.BuildHybridKit

Set the Name of a Cal Kit SENS:CORR:COLL:CKIT:NAME calKit.Name
Get the Number of Cal Kit calKit.CalKitType

Set the Port Label of a Cal Kit calKit.Portlabel

Modify Cal Standards
Select a Cal Standard SENS:CORR:COLL:CKIT:STAN calkit.GetCalStandard
Assign a Class to a Standard SENS:CORR:COLL:CKIT:ORD1 calKit.StandardForClass
Set Standard Type SENS:CORR:COLL:CKIT:STAN:

TYPE
calstd.Type

Set Delay SENS:CORR:COLL:CKIT:STAN:
DEL

calstd.Delay

Set Loss SENS:CORR:COLL:CKIT:STAN:
LOSS

calstd.loss

Set Impedance SENS:CORR:COLL:CKIT:STAN:
IMP

calstd.Z0

Set Max Frequency SENS:CORR:COLL:CKIT:STAN:
FMAX

calstd.MaximumFrequency

Set Min Frequency SENS:CORR:COLL:CKIT:STAN:
FMIN

calstd.MinimumFrequency

Set Label SENS:CORR:COLL:CKIT:STAN:
LAB

calstd.Label

Set Medium (coax|waveguide) SENS:CORR:COLL:CKIT:STAN:
CHAR

calstd.Medium

Set Capacitance (C0 to C3) SENS:CORR:COLL:CKIT:STAN:
C0

calstd.C0

Set Inductance (L0 to L3) SENS:CORR:COLL:CKIT:STAN:
L0

calstd.L0

Set Arbitrary Impedance
(TZReal, TZImag)

SENS:CORR:COLL:CKIT:STAN:
TZReal

calstd.TZReal

Power Calibration
Source Power Cal Source:Power:CORR See Power Cal
Receiver Power Cal Calc:Normalize See Power Cal
GPIB Power Meter Address SYST:COMM:GPIB:PMET:ADD

R
pwrCal.PowerMeterGPIBAddres
s

Retrieve and Put Calibration Data
Retrieve Cal Data from the PNA CALC:DATA scorr? see Data Topic
Put Cal Data in the PNA CALC:DATA scorr see Data Topic

12

Marker Commands
 Function | Search
Description SCPI COM
ON|OFF CALC:MARK Marker Object
Delete All Markers CALC:MARK:AOFF meas.DeleteAllMarkers
Delete Marker meas.DeleteMarker
Viewing Marker readouts View Topic View Topic
Interpolate All Markers meas.Interpolate
Interpolate Individ. Marker CALC:MARK:DISC mark.Interpolated
Type (Normal | Fixed) CALC:MARK:TYPE mark.Type
Format All Markers meas.MarkerFormat
Format Individ. Marker CALC:MARK:FORM mark.Format
Get a handle to Ref marker meas.GetReferenceMarker
Reference Marker On | Off CALC:MARK:REF meas.ReferenceMarkerState
Coupled Markers CALC:MARK:COUP app.CoupledMarkers
Delta Marker CALC:MARK:DELT mark.DeltaMarker
Read/Set Data Point number mark.BucketNumber
Read/Set X-axis value CALC:MARK:X mark.Stimulus
Read/Set Y-axis value CALC:MARK:Y mark.Value
Function
Marker=> Center, Span, and
so forth

CALC:MARK:SET

Marker=> Center (Freq) mark.SetCenter
Marker=> CW Freq mark.SetCW
Marker=> Start (Freq) mark.SetStart
Marker=> Stop (Freq) mark.SetStop
Marker=> Elect. Delay mark.SetElectricalDelay
Marker=> Ref. Level mark.SetReferenceLevel
Search
Execute Search CALC:MARK:FUNC:EXEC
Select Search Function CALC:MARK:FUNC
Maximum CALC:MARK:FUNC mark.SearchMax
Minimum CALC:MARK:FUNC mark.SearchMin
Target (Value) CALC:MARK:TARG mark.TargetValue
Excursion Value CALC:MARK:FUNC:APE:EX

C
mark.PeakExcursion

Threshold Value CALC:MARK:FUNC:APE:TH
R

mark.PeakThreshold

Assign Marker to Domain CALC:MARK:FUNC:DOM:US
ER

mark.UserRange

Domain Range Start CALC:MARK:FUNC:DOM:US
ER:START

mark.UserRangeMin

Domain Range Stop CALC:MARK:FUNC:DOM:US
ER:STOP

mark.UserRangeMax

Tracking CALC:MARK:FUNC:TRAC mark.Tracking
Bandwidth (Target) CALC:MARK:TARG meas.BandwidthTarget
Search Filter Bandwidth CALC:MARK:BWID meas.SearchFilterBandwidth
Read Filter BandWidth CALC:MARK:BWID meas.FilterBW

13

Read Filter Center Freq CALC:MARK:BWID meas.FilterCF
Read Filter Loss CALC:MARK:BWID meas.FilterLoss
Read Filter Q CALC:MARK:BWID meas.FilterQ

Trace Commands
Math | Smooth | Stats | Limits | Transform
Description SCPI COM
Create S-Parameter Meas. app.CreateSParameter
Create Measurement CALC:PAR:DEF app.CreateMeasurement
Create Custom Measurement INACustomMeasurement_Int

erface
Add Measurement meass.Add
List Measurements CALC:PAR:CAT chans.Count
Delete a Measurement CALC:PAR:DEL Measurements.Remove
Get a handle to a Trace win.ActiveTrace
Select a Measurement CALC:PAR:SEL app.ActiveMeasurement
Read Channel Number chan.ChannelNumber
Read Number of
Measurements

chans.Count

Read Measurement
Parameter

meas.Parameter

Set / Read Measurement
Name

meas.Name

Read Measurement Number meas.Number
Change Parameter meas.ChangeParameter
Measurement Format CALC:FORM meas.Format
Math
Data Trace ON|OFF DISP:WIND:TRAC
Memory Trace ON|OFF DISP:WIND:TRAC:MEM
View Trace Type
(Data|Memory|None)

meas.View

Data =>Memory CALC:MATH:MEM meas.DataToMemory
Trace Math
(Add|Sub|Mult|Div)

CALC:MATH:FUNC meas.TraceMath

Smoothing
Smoothing ON|OFF CALC:SMO meas.Smoothing
Smoothing Aperture CALC:SMO:APER meas.SmoothingAperture
Smoothing Points CALC:SMO:POIN
Statistics
Statistics ON|OFF CALC:FUNC:STAT meas.ShowStatistics
Statistics Range CALC:FUNC:DOM:USER meas.StatisticsRange
Domain Range Start CALC:FUNC:DOM:USER:ST

AR
chan.UserRangeMin

Domain Range Stop CALC:FUNC:DOM:USER:ST
OP

chan.UserRangeMax

Set Type (Pk-
Pk|StdDev|Mean)

CALC:FUNC:TYPE

Get All Statistics Data CALC:FUNC:DATA meas.GetFileterStatistics

14

Get Standard Deviation meas.StandardDeviation
Get Mean meas.Mean
Get Peak to Peak meas.PeakToPeak
Limit Lines
Display Lines ON|OFF CALC:LIM:DISP:STAT Limttest.LineDisplay
Fail Sound ON|OFF CALC:LIM:SOUN Limttest.SoundOnFail
Testing ON|OFF CALC:LIM:STAT Trans.State
Limit Test Failed meas.LimitTestFailed
Count Limit Lines chans.Count
Read Test Results GP-

IB_Command_Finder\Status
limts.GetTestResult

Make Limit Lines CALC:LIM:DATA
Limit Line Type (Max|Min) CALC:LIM:SEGM:TYPE limts.Type
Begin Stimulus CALC:LIM:SEGM:STIM:STA

R
limtseg.BeginStimulus

End Stimulus CALC:LIM:SEGM:AMPL:STO
P

limtseg.EndStimulus

Begin Response CALC:LIM:SEGM1:AMPL:ST
AR

limtseg.BeginResponse

End Response CALC:LIM:SEGM1:AMPL:ST
OP

limtseg.EndResponse

Transform
Transform ON|OFF CALC:TRAN:TIME:STAT trans.State
Mode (LowPass, BandPass) CALC:TRAN:TIME trans.Mode
Start Time CALC:TRAN:TIME:STAR trans.Start
Stop Time CALC:TRAN:TIME:STOP trans.Stop
Center CALC:TRAN:TIME:CENT trans.Center
Span CALC:TRAN:TIME:SPAN trans.Span
Step Rise Time CALC:TRAN:TIME:STAR trans.StepRiseTime
Set Low Pass Frequency CALC:TRAN:TIME:LPFR trans.SetFrequencyLowPass
Gating
ON|OFF CALC:FILT:TIME:STAT gate.State
Type (BandPass, Notch) CALC:FILT:TIME gate.Type
Shape CALC:FILT:GATE:TIME:SHA

P
gat.Shape

Start CALC:FILT:TIME:STAR gate.Start
Stop CALC:FILT:GATE:TIME:STO

P
gate.Stop

Center CALC:FILT:GATE:TIME:CEN
T

gate.Center

Span CALC:FILT:GATE:TIME:SPA
N

gate.Span

Window
Kaiser Beta CALC:TRAN:TIME:KBES trans.KaiserBeta
Impulse Width CALC:TRAN:TIME:IMP:WIDT trans.ImpulseWidth

Scale Commands
Description SCPI COM
AutoScale DISP:WIND:TRAC:Y:AUTO Trce.Autoscale

15

AutoScale All Trce.Autoscale
Per Division DISP:WIND:TRAC:Y:PDIV trce.YScale
Reference Level DISP:WIND:TRAC:Y:RLEV trce.ReferenceValue
Reference Position DISP:WIND:TRAC:Y:RPOS trce.ReferencePosition
Electrical Delay CALC:CORR:EDEL:TIME meas.ElectricalDelay
Phase Offset CALC:CORR:OFFS:PHAS meas.PhaseOffset

System Commands
Status | Events | Macros | Rear Panel
Description SCPI COM
Quit application app.Quit
Preset SYST:PRES app.Preset
Reset app.Reset
Status Commands
Status Registers GP-IB\Status
*OPC;*WAI GP-IB\Common_Commands
Events
AllowAllEvents Method app.AllowAllEvents
AllowEventCategory Method app.AllowEventCategory
AllowEventMessage Method app.AllowEventMessage
AllowEventSeverity Method app.AllowEventSeverity
DisallowAllEvents Method app.DisallowAllEvents
MessageText Method app.MessageText
OnCalEvent app.OnCalEvent
OnChannelEvent app.OnChannelEvent
OnDisplayEvent app.OnDisplayEvent
OnHardwareEvent app.OnHardwareEvent
OnMeasurementEvent app.OnMeasurementEvent
OnSCPIEvent app.OnSCPIEvent
OnSystemEvent app.OnSystemEvent
OnUserEvent app.OnUserEvent
SetFailOnOverRange app.SetFailOnOverRange
Macros
Execute Macro app.ExecuteShortcut
Get Macro app.GetShortcut
Delete Macro app.DeleteShortCut
Put Macro app.PutShortcut
Rear Panel Connector Controls
Material Handler I/O
Connector

GP-IB\Control HWMaterialHandlerIO_Object

Auxiliary IO Connector GP-IB\Control HWauxIO_Object
External Test Set Connector GP-IB\Control HWExternalTestSetIO_Object
Output Voltage Mode GP-IB\Control HWAuxIO2
FootSwitch Mode GP-IB\Control HWAuxIO3

16

Data Commands
See a map of the data access locations
Description SCPI COM
Get Measurement Data
FROM the Analyzer
Get complex data from the
specified location.

IArrayTrans.getComplex

Get typed NAComplex data
from the specified location.

IArrayTrans.getNAComplex

Get data pairs from the
specified location.

IArrayTrans.getPairedData

Get scalar data from the
specified location.

IArrayTrans.getScalar

Get variant data from the
specified location

meas.GetData

Specifies ASCII or REAL type
for data transfers

Format:Data

Get complex or formatted
data from the measurement
or memory result buffer

Calc:Data

Put Measurement Data INTO the Analyzer
Put complex data into the
specified location.

IArrayTrans.putComplex

Put typed NAComplex data
into the specified location.

IArrayTrans.putNAComplex

Put scalar data into the
measurement result location.

IArrayTrans.putScalar

Put complex Variant data
into the specified location.

IArrayTrans.putDataComplex

Put complex or formatted
data into the measurement or
memory result buffer

Calc:Data

Get Calibration Data FROM the Analyzer
Get complex Error Term
data

ICalData.GetErrorTermComple
x

Get variant Error Term data Calc:Data? CalSet.getErrorTerm
Get complex Standard data ICalData2.getStandardComple

x
Get variant Standard data CalSet.getStandard
Put Calibration Data INTO the Analyzer
Put complex Error Term
data

ICalData.putErrorTermComple
x

Put variant Error Term data Calc:Data CalSet.putErrorTerm
Put complex Standard data ICalData2.putStandardComple

x
Put variant Standard data CalSet.putStandard
Get and Put Custom Measurement Data
Get and Put Custom data Calc:Data IArrayTransfer2 Interface

17

PNA Object Model

See a list of obsolete commands.

18

Obsolete Commands

As we continue to expand the capability of the PNA, we will continue to develop new COM
commands. Some of these new commands replace an existing command, giving it more
functionality. Although the existing command will continue to work as usual, we recommend using
the new command in code that you develop. Here is a list of replacement commands:
Old Command New Command
Acquire Cal Standard Method Acquire Cal Standard2 Method
Create SParameter Method Create SParameterEX Method
Calibrator.getErrorTerm CalSet.getErrorTerm
Calibrator.getStandard CalSet.getStandard
Calibrator.putErrorTerm CalSet.putErrorTerm
Calibrator.putStandard CalSet.putStandard

Application Object
Application Object

Description
The Application object is the highest object in the analyzer object model. This object presents
methods and properties that affect the entire analyzer, rather than a specific channel or
measurement. For example, the application object provides the GetIDString method. There’s only
one ID string for the instrument, unrelated to the channel or parameter being measured. Likewise,
the TriggerSignal Property is global to the instrument. You can elect to use an internally
generated (free run) trigger or a manual trigger. Either way, that type of trigger generation will be
used on all measurements, on all channels. Therefore, it is under the Application object.
This object is unique in that you must Create this object rather than just get a handle to it. See
Getting a Handle to an Object.

Methods Description
ActivateWindow Makes a window object the Active Window.
AllowAllEvents Monitors all events
AllowEventCategory Monitors an event category
AllowEventMessage Monitors an event
AllowEventSeverity Monitors an event severity level
BuildHybridKit Defines the user kit as port1kit + port2kit.
Channel (object)
CreateCustomMeasurement Creates a new custom measurement.
CreateMeasurement Creates a new measurement.
CreateSParameter OBSOLETE - Use CreateSParameterEx

method
CreateSParameterEx Creates a new S-Parameter measurement

with a 3-port load.
DeleteShortCut Removes a macro (shortcut) from the list of

macros
DisallowAllEvents Monitors NO events
DoPrint Prints the screen to the active Printer.
ExecuteShortcut Executes a macro (shortcut) stored in the

analyzer.

19

GetAuxIO Returns a handle to the AuxIO interface
GetCalManager Returns a handle to the CalManager interface
GetExternalTestSetIO Returns a handle to the ExternalTestSet IO

interface
GetMaterialHandlerIO Returns a handle to the MaterialHandlerIO

interface
GetShortcut Returns the title and path of the specified

macro (shortcut).
LaunchCalWizard Launches the Cal Wizard
ManualTrigger Triggers the analyzer when TriggerSignal =

naTriggerManual.
MessageText Returns a message for an eventID
Preset Resets the analyzer to factory defined default

settings.
PrintToFile Saves the screen data to bitmap (.bmp) file of

the screen.
PutShortcut Puts a Macro (shortcut) file into the analyzer.
Quit Ends the Network Analyzer application.
Recall Restores all cal kits from disk.
RecallKits Recalls the current state of the calibration kits

on disk.
Reset Removes all existing windows and

measurements.
RestoreCalKitDefaults Restores the factory defaults for the specified

kit.
RestoreCalKitDefaultsAll Restores the factory defaults for all kits.
Save Saves files to disk
SaveKits Saves all cal kits to disk.
SetFailOnOverRange Causes over range values to return an error

code
ShowStatusBar Shows and Hides the Status Bar.
ShowStimulus Shows and Hides Stimulus information.
ShowTitleBars Shows and Hides the Title Bars.
ShowToolbar Shows and Hides the specified Toolbar.
Properties Description
ActiveCalKit Returns a pointer to the kit identified by

kitNumber.
ActiveChannel Returns a handle to the Active Channel

object.
ActiveMeasurement Returns a handle to the Active Measurement

object.
ActiveNAWindow Returns a handle to the Active Window object.
ArrangeWindows Sets or returns the arrangement of all the

windows.
CalKitType Sets or returns the calibration kit type for to be

used for calibration or for kit modification.
Shared with the CalKit object.

Channels (collection)
CoupledMarkers Sets (or reads) coupled markers ON and OFF
ExternalALC Sets or returns the source of the analyzer

leveling control.
GPIBMode Makes the analyzer the system controller or a

talker/listener.
IDString Returns the model, serial number and

software revision of the analyzer
Measurements (collection)

20

NAWindows (collection)
NumberOfPorts Returns the number of hardware source ports

on the PNA
Options Returns the options on the analyzer
PortExtension (object)
SCPIStringParser (object)
SourcePowerCalibrator (object)
SourcePowerState Turns Source Power ON and OFF.
SystemImpedanceZ0 Sets the analyzer impedance value
TriggerDelay Sets or returns the delay time for a trigger.
TriggerSignal Sets or returns the trigger source.
TriggerType Sets or returns the scope of a trigger signal.
VelocityFactor Sets the velocity factor to be used with

Electrical Delay and Port Extensions.
Visible Makes the Network Analyzer application

visible or not visible. (Default property of
this object)

WindowState Sets or returns the window setting of
Maximized, Minimized, or Normal.
Shared with the NAWindow Object

Events Description
OnCalEvent Triggered by a calibration event.
OnChannelEvent Triggered by a channel event.
OnDisplayEvent Triggered by a display event.
OnHardwareEvent Triggered by a hardware event.
OnMeasurementEvent Triggered by a measurement event.
OnSCPIEvent Triggered by a SCPI event.
OnSystemEvent Triggered by a system event.
OnUserEvent For future use

Write-only About Windows

ActivateWindow Method

Description Makes a window object the Active Window.
In order to change properties on any of the active objects, you must first have
a "handle" to the active object using the Set command. For more information,
See Programming the Analyzer Object Model.
You do not have to make an object "Active" to set or read its properties
remotely. But an object must be "Active" to change its values from the front
panel.

 VB Syntax app.ActivateWindow n

Variable (Type) - Description
app An Application (object)
n (long) Number of the window to make active
Return Type Window Object
Default Not Applicable

Examples app.ActivateWindow 4

C++ Syntax HRESULT ActivateWindow(long WindowNumber)

21

Interface IApplication

Write/Read About Analyzer Events

AllowAllEvents Method

Description Sets event filtering to monitor all events in the analyzer. This is the default
setting when subscribing to events. This could slow the measurement speed
of the analyzer significantly.

 VB Syntax app.AllowAllEvents

Variable (Type) - Description
app An Application (object)
Return Type Not Applicable
Default Not Applicable

Examples app.AllowAllEvents

C++ Syntax HRESULT AllowAllEvents()
Interface IApplication

Write/Read About Analyzer Events

AllowEventCategory Method

Description Sets event filtering to monitor a category of event.
 VB Syntax app.AllowEventCategory, category, state

Variable (Type) - Description
app An Application (object)
category Category to monitor. Choose from list in Working with the Analyzer’s

Events
state (boolean)

 True - monitor
 False - do not monitor

Return Type Not Applicable
Default Not Applicable

Examples app.AllowEventCategory

C++ Syntax HRESULT AllowEventCategory(tagNAEventCategory category,

VARIANT_BOOL bAllow)
Interface IApplication

Write/Read About Analyzer Events

AllowEventMessage Method

Description Sets event filtering to monitor specific events.
 VB Syntax app.AllowEventMessage event

Variable (Type) - Description
app An Application (object)

22

event Event to monitor. Refer to list in Working with the Analyzer’s Events
state (boolean)

 True - monitor
 False - do not monitor

Return Type Not Applicable
Default Not Applicable

Examples app.AllowEventMessage

C++ Syntax HRESULT AllowEventMessage(tagNAEventID eventID, VARIANT_BOOL

bAllow)
Interface IApplication

Write/Read About Analyzer Events

AllowEventSeverity Method

Description Sets event filtering to monitor levels of severity.
 VB Syntax app.AllowEventSeverity severity,state

Variable (Type) - Description
app An Application (object)
severity (enum naEventSeverity) Choose from:naEventSeverityERROR

 naEventSeverityINFORMATIONAL
 naEventSeveritySUCCESS
 naEventSeverityWARNING

state (boolean)
 True - monitor
 False - do not monitor

Return Type Not Applicable
Default Not Applicable

Examples app.AllowEventSeverity

C++ Syntax HRESULT AllowEventSeverity(tagNAEventSeverity severity,

VARIANT_BOOL bAllow)
Interface IApplication

Write-only About Modifying Cal Kits

BuildHybridKit Method

Description Use this method when you have different port connectors. This is a

convenient way to combine two kits that match the connectors on your
DUT.

 VB Syntax app.BuildHybridKit port1Kit,p1sex,port2Kit,p2sex,adapter,user kit

Variable (Type) - Description
app An Application (object)
port1Kit
 port2Kit

(enum NACalKit) - Specifies the two kits to be used to build the hybrid
kit. Choose from:
naCalKit_85032F_N50
 naCalKit_85033E_3_5
 naCalKit_85032B_N50

23

 naCalKit_85033D_3_5
 naCalKit_85038A_7_16
 naCalKit_85052C_3_5_TRL
 naCalKit_User7
 naCalKit_User8
 naCalKit_User9
 naCalKit_User10

p1sex
 p2sex

(enum NAPortSex) - Specifies the sex of the connector at that port.
Choose from:
 naMale
 naFemale
 naDon’tCare

adapter (enum NAAdapter) -Choose from:
 naUserkit - the electrical length of the adapter in the userKit
specifications
 naZeroLength - no adapter

userKit (enum NACalKit) - The Hybrid kit - Choose from the previous list of kits
Return Type Not Applicable
Default Not Applicable

Examples app.BuildHybridKit

naCalKit_85033E_3_5,naMale,naCalKit_85038A_7_16
 ,naFemale,naUserkit,naCalKit_User8

C++ Syntax HRESULT BuildHybridKit\(tagNACalKit port1Kit, tagNAPortSex port1Sex,

tagNACalKit port2Kit, tagNAPortSex port2Sex, tagNAAdapter adapter,
tagNACalKit userKit)

Interface IApplication

Write-only About Custom Measurements

CreateCustomMeasurement Method

Description Creates a new custom measurement.
 VB Syntax app.CreateCustomMeasurement chanNum,guid[,window]

Variable (Type) - Description
app (object) - An Application object
chanNum (long) -Channel number used by the new measurement; can exist or be

a new channel.
guid (string) - the GUID (Globally Unique IDentifier) of the new custom

measurement object. The new custom measurement must be installed
and registered on the PNA. Should be in “registry format”. See example
below.

window (long) Optional argument. Number of the window the new custom
measurement will be placed in. Choose 1 to 4. If unspecified, the
measurement is placed in the active window.

Return Type Not Applicable
Default Not Applicable

Examples app.CreateCustomMeasurement 1, "{12345678-56D3-11D5-AD50-

00108334AE98}" 'Not an actual custom measurement - for example
purpose only

C++ Syntax HRESULT CreateCustomMeasurement (long ChannelNum, BSTR guid,

24

long windowNumber)
Interface IApplication

Write-only About Measurement Parameters

CreateMeasurement Method

Description Creates a new measurement
 VB Syntax app.CreateMeasurement chanNum,param,lPort[,window]

Variable (Type) - Description
app Application (object)
chanNum (long) - Channel number of the new measurement; can exist or be a new

channel
param ((string) - New parameter. Choose from:

 S11 | S22 | S21 | S12
Additionally, for 3-port analyzers only:
 S33 | S13 | S31 | S23 | S32

For non-ratioed measurements:
 A | B | R1 | R2
 C -3-port analyzers only

For ratioed measurements:
A/B

A/C - 3 port analyzers only

B/A

B/C - 3 port analyzers only

C/A - 3 port analyzers only

C/B - 3 port analyzers only

A/R1

B/R1

C/R1 - 3 port analyzers only

A/R2

B/R2

R1/A

R2/A

R1/B

R2/B

25

R1/C - 3 port analyzers only

R2/R1

R1/R2

lPort (long) -
 Load port if param is a reflection S-Parameter
Ignored if param is a transmission S-Parameter
Source port if param is anything other than an S-parameter

window (long) Optional argument. Window number of the new measurement.
Choose 1 to 4. If unspecified, the measurement will be created in the
Active Window.

Return Type Not Applicable
Default Not Applicable

Examples app.CreateMeasurement(1,"A/R1",1,0)

C++ Syntax HRESULT CreateMeasurement(long ChannelNum, BSTR strParameter,

long lPort, long windowNumber)
Interface IApplication

Write-only About Measurement Parameters

CreateS-Parameter Method - Obsolete

Description Note: This method is replaced by Create SParameterEX method which
also allows the selection of a load port

This method creates a new S-Parameter measurement in an existing or
new window.

 VB Syntax app.CreateSParameter chan,recvr,source,[window]

Variable (Type) - Description
app Application (object)
chan (long integer) - Channel number of the new measurement
recvr (long integer) - Port number of the receiver (1 or 2)
source (long integer) - Port number of the source (1 or 2)
window (long integer) - Optional argument. Window number of the new

measurement. Choose 1 to 4. If unspecified, the S-Parameter will be
created in the Active Window.

Return Type Not Applicable
Default Not Applicable

Examples app.CreateSParameter 1,2,1,1 ’Creates a new S21 measurement in

channel 1 and New window(1) app.CreateSParameter 1,2,1 ’Creates a
new S21 measurement in channel 1 and in the active window

C++ Syntax HRESULT CreateSParameter(long ChannelNum, long RcvPort, long

SrcPort, long windowNumber)
Interface IApplication

Write-only About Measurement Parameters

26

CreateSParameterEx Method

Description Creates a new S-Parameter measurement in an existing or new window

and specifies the load port for 3-port devices.
 VB Syntax app.CreateSParameter chan,recvr,source[,loadPort][,window]

Variable (Type) - Description
app Application (object)
chan (long integer) - Channel number of the new measurement
recvr (long integer) - Port number of the receiver
source (long integer) - Port number of the source
loadPort (long integer) - Port number of the load. Required for reflection

measurements of 3-port devices on 3-port PNAs.
window (long integer) - Optional argument. Window number of the new

measurement. Choose 1 to 4. If unspecified, the S-Parameter will be
created in the Active Window.

Return Type Not Applicable
Default Not Applicable

Examples app.CreateSParameter 1,2,1,1 ’Creates a new S21 measurement in

channel 1 and New window(1)
 app.CreateSParameter 2,1,1,3,1 ’Creates a new S11 measurement on
channel 2 with port 3 as the load. Create in the active window

C++ Syntax HRESULT CreateSParameter(long ChannelNum, long RcvPort, long

SrcPort, long LoadPort, long windowNumber)
Interface IApplication

Write-only About Macros

DeleteShortCut Method

Description Removes a macro from the list of macros in the analyzer. Does not
remove the file.
Note: There are always 12 macro positions. They do not have to be
sequential. For example, you can have number 7 but no numbers 1 to 6.

 VB Syntax app.DeleteShortCut item

Variable (Type) - Description
app An Application (object)
item (long integer) number of the macro to be deleted.
Return Type Not Applicable
Default Not Applicable

Examples app.DeleteShortCut 2

C++ Syntax HRESULT DeleteShortcut(long Number)
Interface IApplication

Write/Read About Analyzer Events

27

DisallowAllEvents Method

Description Sets event filtering to monitor NO eventst.
 VB Syntax app.DisallowAllEvents

Variable (Type) - Description
app An Application (object)
Return Type Not Applicable
Default Not Applicable

Examples app.DisallowAllEvents

C++ Syntax HRESULT DisallowAllEvents()
Interface IApplication

Write-only About Printing

DoPrint Method

Description Prints the screen to the default Printer.
 VB Syntax app.DoPrint

Variable (Type) - Description
app Application (object)
Return Type Not Applicable
Default Not Applicable

Examples app.DoPrint

C++ Syntax HRESULT DoPrint()
Interface IApplication

Write-only About Macros

ExecuteShortcut Method

Description Executes a Macro (shortcut) stored in the analyzer. Use app.getShortcut
to list existing macros. Use app.putShortcut to associate the macro
number with the file.

 VB Syntax app.ExecuteShortcut index

Variable (Type) - Description
app Application (object)
index (long integer) - Number of the macro stored in the analyzer.
Return Type Not Applicable
Default Not Applicable

Examples app.ExecuteShortcut 1

C++ Syntax HRESULT ExecuteShortcut(long index)
Interface IApplication

28

Read-only About the AuxIO connector

GetAuxIO Method

Description This method returns the IAuxIO interface.
 VB Syntax app.GetAuxIO

Variable (Type) - Description
app (object) - An Application object
Return Type IHWAuxIO
Default Not Applicable

Example Dim app As AgilentPNA835x.Application

 Dim aux As HWAuxIO
 Set aux = app.GetAuxIO

C++ Syntax HRESULT GetAuxIO (IHWAuxIO **pAux);
Interface IApplication

Read-only About Cal Sets

GetCalManager Method

Description This method returns the ICalManager interface.
 VB Syntax app.GetCalManager

Variable (Type) - Description
app Application (object)
Return Type ICalManager*
Default Not Applicable

Example dim app as AgilentPNA835x.Application

 dim mgr as CalManager
 set mgr = app.GetCalManager

C++ Syntax HRESULT GetCalManager(ICalManager **mgr);
Interface IApplication

Read-only About the External TestSet connector

Get ExternalTestSetIO Method

Description This method returns the IExternalTestSetIO interface.
 VB Syntax app.GetExternalTestSetIO

Variable (Type) - Description
app Application (object)
Return Type IHWExternalTestSetIO
Default Not Applicable

Example Dim app As AgilentPNA835x.Application

 Dim ets As HWExternalTestSetIO

29

 Set ets = app.GetExternalTestSetIO

C++ Syntax HRESULT GetExternalTestSetIO (IHWExternalTestSetIO **ptestset);
Interface IApplication

Read-only About the MaterialHandler connector

Get MaterialHandlerIO Method

Description This method returns the MaterialHandlerIO interface.
 VB Syntax app.GetMaterialHandlerIO

Variable (Type) - Description
app Application (object)
Return Type IHWMaterialHandlerIO
Default Not Applicable

Example Dim app As AgilentPNA835x.Application

 Dim hand As HWMaterialHandlerIO
 Set hand = app.GetMaterialHandlerIO

C++ Syntax HRESULT GetMaterialHandlerIO (IHWMaterialHandlerIO **phand);
Interface IApplication

Read-only

GetShortcut Method

Description Returns the Title, Path, and optional argument strings, of the specified
Macro (shortcut). Use this method to list the titles and paths of macros in
the analyzer.

 VB Syntax app.GetShortcut index, title, path, arguments

Variable (Type) - Description
app Application (object)
index (long) - Number of the macro. Use a number between 1 and 12.
title (string) - Title of the specified macro. (Appears in the softkey label)
path (string) - Pathname of the specified macro.
arguments (string) - Arguments for the specified macro
Return Type String
Default Not Applicable

Example Dim t As String

 Dim p As String
 Dim arg As String
 Dim i As Integer
 For i = 1 to 12
 app.GetShortcut i,t,p,arg
 Print t,p
 Next

30

C++ Syntax HRESULT GetShortcut(long Number, BSTR* title, BSTR* pathname,

BSTR* arguments)
Interface IApplication
Remarks Shortcuts can also be defined and accessed using the macro key on the

front panel. However, the benefit of this feature is primarily for the
interactive user

Read-Write About the Cal Wizard

LaunchCalWizard Method

Description Launches the Cal Wizard on the PNA and does not return until the Cal

Wizard is dismissed.
Note: The Cal Wizard operates on the active measurement. Therefore,
activate the measurement to be calibrated before launching the Cal
Wizard.

 VB Syntax success = app.LaunchCalWizard (newCS)

Variable (Type) - Description
success (boolean) - variable to store the returned value

 True - The Cal was completed
 False - The Cal was canceled without completing the calibration.

app (object) Application object
newCS (boolean)

True - Cal will be performed on a new Cal Set.
 False - Cal will be performed using the existing Cal Set assigned to the
channel. If no Cal Set is found, a new Cal Set will be created.

Return Type Boolean
Default Not Applicable

Example dim bSuccess as boolean

 dim bNewCalset as boolean
 bNewCalSet = false
 bSuccess = app.LaunchCalWizard(bNewCalSet)

C++ Syntax HRESULT
Interface IApplication

Write-only About Triggering

ManualTrigger Method

Description Triggers the analyzer when TriggerSignal = naTriggerManual.
 VB Syntax app.ManualTrigger [sync],[timeout]

Variable (Type) - Description
app Application (object)
sync (boolean) - Optional argument.

 A variable set to either True or False.
True - The analyzer waits until the trigger is completed to process
subsequent commands.

31

 False - Subsequent commands are processed immediately (the default
setting)

timeout (long) - Optional argument.
 If sync is true, timeout sets the amount of time the PNA will wait until
continuing program execution. Units are milliseconds. A value of -1 (the
default setting) causes the PNA to wait indefinitely.
If sync is False, the timeout setting is ignored.

Return Type Not Applicable
Default Not Applicable

Examples ’ After Manual trigger is executed, the PNA will wait 1 second to continue

program execution
 Dim wait as Boolean
 wait = True
 app.ManualTrigger wait, 1000

C++ Syntax HRESULT ManualTrigger(VARIANT_BOOL bSynchronize, long timeout)
Interface IApplication

Write/Read About Analyzer Events

MessageText Method

Description Returns text for the specified eventID
 VB Syntax app.MessageText,eventID,message

Variable (Type) - Description
app An Application (object)
enentID (enum naEventID) Choose from the list in Working with the Analyzer’s

Events
message (string) - variable to store the returned message
Return Type String
Default Not Applicable

Examples RFNA.MessageText

naEventID_ARRANGE_WINDOW_EXCEED_CAPACITY, message

C++ Syntax HRESULT MessageText(tagNAEventID msgID, BSTR* message)
Interface IApplication

Write-only Factory Preset Settings

Preset Method

Description Application Object: Deletes all traces and windows. In addition, resets
the analyzer to factory defined default settings and creates an S11
measurement named "CH1_S11_1" in window 1.
Channel Object: Resets the channel (object) to factory defined default
settings. Does NOT delete the current measurements or add a new
measurement.

 VB Syntax app.Preset
 chan.Preset

32

Variable (Type) - Description
app An Application (object)
chan A Channel (object)
Return Type Not Applicable
Default Not Applicable

Examples app.Preset

C++ Syntax HRESULT Preset()
Interface IApplication

 IChannel

Write-only About Saving to File

PrintToFile Method

Description Saves the screen image to a bitmap (.bmp) file.
 VB Syntax app.PrintToFile filename

Variable (Type) - Description
app An Application (object)
filename (string) Name of the file to save the screen to. The file is saved to the

current working directory unless a valid full path name is specified.
Use one of the following suffixes:

• .bmp - not recommended due to large file size
• .jpg - not recommended due to poor quality

.png - recommended
Return Type Not Applicable
Default Not Applicable

Examples app.PrintToFile "myfile.png"

 app.PrintToFile "c:\data\myfile.png"

C++ Syntax HRESULT PrintToFile(BSTR bstrFile)
Interface IApplication

Write-only About Macros

PutShortcut Method

Description Defines a Macro (shortcut) file in the analyzer. This command links a file
name and path to the Macro file. You still need to put the macro file in the
analyzer at the location indicated by this command.

 VB Syntax app.PutShortcut index,title,path

Variable (Type) - Description
app Application (object)
index (long) - Number of the macro to be stored in the analyzer. If the index

number already exists, the existing macro is replaced with the new
macro.

title (string) - The name to be assigned to the macro

33

path (string) - Full pathname to the existing macro "executable" file.
Return Type Not Applicable
Default Not Applicable

Examples app.PutShortcut 1,"Test","C:\Automation\MyTest.vbs"

C++ Syntax HRESULT PutShortcut(long Number, BSTR title, BSTR pathname)
Interface IApplication

Write-only

Quit Method

Description Terminates the Network Analyzer application.
 VB Syntax app.Quit

Variable (Type) - Description
app Application (object)
Return Type Not Applicable
Default Not Applicable

Examples app.Quit

C++ Syntax HRESULT Quit()
Interface IApplication
Remarks Under the rules of COM, the server should not exit until all references to it

have been released. This method is a brute force way of terminating the
application. Be sure to release all references (or terminate the client
program) before attempting to restart the Network Analyzer application.
An alternate approach to terminating the application is to make the
application invisible (app.Visible = False) and release all references. The
server will shutdown.

Write-only About Save/Recall

Recall Method

Description Recalls a measurement state, calibration state, or both from the hard drive
into the analyzer.
Use app.Save to save the measurement and calibration state.

 VB Syntax app.Recall (filename.ext)

Variable (Type) - Description
app Application (object)
filename.ext (string) - Filename and extension of the file to be recalled.

Extensions:
• .sta - Instrument State
• .cal - Calibration file
• .cst - Both Instrument State and Calibration file

Files are stored in the default folder "C:\Program Files\Agilent\Network
Analyzer\Documents
To recall from a different folder, specify the pathname in the filename.ext.
argument.

Return Type Not Applicable

34

Default Not Applicable

Examples app.Recall (mystate.sta) ’Recalls "mystate.sta" from the default folder

 app.Recall ("C:\Program Files\Agilent\Network
Analyzer\Documents\Newfolder\MyState.cst) ’Recalls "mystate.cst" from the
specified folder

C++ Syntax HRESULT Recall(BSTR bstrFile)
Interface IApplication

Write-only About Modifying Cal Kits

Recall Kits Method

Description Recalls the calibration kits definitions that were stored witht the SaveKits
command.

 VB Syntax app.RecallKits

Variable (Type) - Description
app Application (object)
Return Type Not Applicable
Default Not Applicable

Examples app.RecallKits

C++ Syntax HRESULT RecallKits()
Interface IApplication

Write-only About Presetting the Analyzer

Reset Method

Description Removes all existing windows and measurements from the application.
(Unlike Preset, does not create a new measurement.)

 VB Syntax app.Reset

Variable (Type) - Description
app Application (object)
Return Type Not Applicable
Default Not Applicable

Examples app.Reset

C++ Syntax HRESULT Reset()
Interface IApplication

Write-only About Modifying Cal Kits

RestoreCalKitDefaults Method

Description Restores the original properties of the specified Cal Kit, overwritting the
last definition with the factory defaults.

 VB Syntax app.RestoreCalKitDefaults (calKit)

35

Variable (Type) - Description
app Application (object)
calKit (enum NACalKit) - Calibration Kit to restore. Choose from:

1 - naCalKit_85032F_N50
 2 - naCalKit_85033E_3_5
 3 - naCalKit_85032B_N50
 4 - naCalKit_85033D_3_5
 5 - naCalKit_85038A_7_16
 6 - naCalKit_85052C_3_5_TRL
 7 - naCalKit_User7
 8 - naCalKit_User8
 9 - naCalKit_User9
 10 - naCalKit_User10

Return Type Not Applicable
Default Not Applicable

Examples app.RestoreCalKitDefaults naCalKit_MechKit10

C++ Syntax HRESULT RestoreCalKitDefaults\(tagNACalKit kit)
Interface IApplication

Write-only About Modifying Cal Kits

RestoreCalKitDefaultsAll Method

Description Restores the original properties of ALL of the Cal Kits, overwritting the

last definitions with the factory defaults.
 VB Syntax app.RestoreCalKitDefaultsAll

Variable (Type) - Description
app Application (object)
Return Type Not Applicable
Default Not Applicable

Examples app.RestoreCalKitDefaultsAll

C++ Syntax HRESULT RestoreCalKitDefaultsAll()
Interface IApplication

Write-only About Save/Recall

Save Method

Description Saves the appropriate content to the hard drive depending on the file
suffix provided. See the table below. Some saved files can be recalled
using app.Recall. depending on the content.

 VB Syntax app.Save(filename.ext)

Variable (Type) - Description
app Application (object)
filename.ext (string) - Filename and extension of the file to be saved.

Extensions:

36

• .cst - Saves both Instrument State and Cal Set reference -
Recalls a calibrated measurement. (Recallable)

• .sta - Saves Instrument State only - recalls the instrument state
without calibration. (Recallable)

• .cal - Calibration file – saves the active Cal Sets currently in use
by any channel. Use this mode for archival purposes only. All Cal
Sets are saved to a Cal Set data file. This mode provides a
method of safeguarding calibration data. This data can be
restored to the list of Cal Sets available in the instrument.
(Recallable)

• .prn - Saves active trace in comma-separated format (not
recallable)

• .bmp - Saves a Bitmap of the screen (not recallable)
• .s1p - Saves 1-port measurement data (not recallable)
• .s2p - Saves 2-port measurement data (not recallable)

Files are saved to the default folder "C:\Program Files\Agilent\Network
Analyzer\Documents. To save to a different folder, specify the pathname
in the filename.ext. argument.

Return Type Not Applicable
Default Not Applicable

Examples app.Save(mystate.sta) 'Saves "mystate.sta" to the default folder

 app.Save("C:\Program Files\Agilent\Network
Analyzer\Documents\Newfolder\MyState.cst) 'Saves "mystate.cst" to the
specified folder

C++ Syntax HRESULT Save(BSTR bstrFile)
Interface IApplication

Write-only About Modifying Cal Kits

SaveKits Method

Description Saves the cal kits, typically after modifying a calibration kit. To load a cal
kit into the analyzer from the hard drive, use app.RecallKits.

 VB Syntax app.SaveKits

Variable (Type) - Description
app Application (object)
Return Type Not Applicable
Default Not Applicable

Examples app.SaveKits

C++ Syntax HRESULT SaveKits()
Interface IApplication

Write/Read About Analyzer Events

SetFailOnOverRange Method

Description When set TRUE, configures the analyzer to report outOfRange conditions

37

with an error code. Any overrange error will return
E_NA_LIMIT_OUTOFRANGE_ERROR.
Note: This method is for the benefit of VB clients. The analyzer
automatically adjusts overrange conditions to the closest acceptable
setting. The VB user will not See that an overrange occurred because the
HRESULT is not returned if it has a success code. For more information,
See Events/OverRange.

 VB Syntax app.SetFailOnOverRange state

Variable (Type) - Description
app An Application (object)
state (boolean) -

 True (1) - Overrange conditions report an error code
 False (0) - Overrange conditions report a success code

Return Type Not Applicable
Default False (0)

VB Example app.SetFailOnOverRange TRUE

 On Error Goto ERRHANDLER

 ’the following overrange will cause ERRHANDLER to be
invoked

 channel.StartFrequency = 9.9 GHZ
 exit

ERRHANDLER:
 print "something failed"

C++ Syntax HRESULT put_SetFailOnOverRange(VARIANT_BOOL mode)
Interface IApplication

Write-only About Display Formatting

ShowStatusBar Method

Description Shows and Hides the Status Bar. The Status Bar is located across the
bottom of the display. The following information is shown for the active
measurement:

• Channel number
• Parameter
• Correction On or Off

Remote or Local operation
 VB Syntax app.ShowStatusBar state

Variable (Type) - Description
app Application (object)
state (boolean) -

 True (1) - Show the Status Bar
 False (0) - Hide the Status Bar

Return Type Not Applicable
Default Not Applicable

Examples app.ShowStatusBar True

C++ Syntax HRESULT ShowStatusBar (VARIANT_BOOL bState)

38

Interface IApplication

Write-only About Display Formatting

ShowStimulus Method

Description Shows and Hides the Stimulus (X-axis) information located at the bottom
of the display. The start and stop stimulus values are shown for the active
measurement.

 VB Syntax app.ShowStimulus state

Variable (Type) - Description
app Application (object)
state (boolean) -

 True (1) - Show the Stimulus information
 False (0) - Hide the Stimulus information

Return Type Not Applicable
Default Not Applicable

Examples app.ShowStimulus True

C++ Syntax HRESULT ShowStimulus(VARIANT_BOOL bState)
Interface IApplication

Write-only About Display Formatting

ShowTitleBars Method

Description Shows and Hides the Title Bars. The Title Bars are across the top of the
Network Analyzer Window and each of the measurement windows. The
Window name is shown in the Title Bar.

 VB Syntax app.ShowTitleBars state

Variable (Type) - Description
app Application (object)
state (boolean)

 True (1) - Show the Title Bars
 False (0) - Hide the Title Bars

Return Type Not Applicable
Default Not Applicable

Examples app.ShowTitleBars True

C++ Syntax HRESULT ShowTitleBars\(VARIANT_BOOL bState)
Interface IApplication

Write-only About Display Formatting

ShowToolbar Method

Description Shows and Hides the specified Toolbar.
 VB Syntax app.ShowToolbar toolbar,state

39

Variable (Type) - Description
app Application (object)
toolbar (enum NAToolbarType) - The toolbar to show or hide. Choose from:

0 - naToolbar_None
 1 - naToolbar_ActiveEntry
 2 - naToolbar_Markers
 3 - naToolbar_Measurement
 4 - naToolbar_Stimulus
 5 - naToolbar_SweepControl

state (boolean) -
 True (1) - Show the specified toolbar
 False (0) - Hide the specified toolbar

Return Type Not Applicable
Default 1 - naToolbar_ActiveEntry showing; all others hiding.

Examples app.ShowToolbar 1,1 ’shows the active entry toolbar

C++ Syntax HRESULT ShowToolbar(tagNAToolbarType toolbar, VARIANT_BOOL

bState)
Interface IApplication

Read-only About Calibration Kits

ActiveCalKit Property

Description Returns a handle to the Active CalKit object. You can either (1) use the
handle directly to access CalKit properties and methods, or (2) set a
variable to the CalKit object. The variable retains a handle to the original
object if another CalKit becomes active.

 VB Syntax 1) app.ActiveCalKit.<setting>
 or
 2) Set cKit = app.ActiveCalKit

Variable (Type) - Description
app (object) - An Application object
<setting> A CalKit property (or method) and arguments
cKit (object) - A CalKit object
Return Type CalKit object
Default None

Examples Public cKit as calKit

 Set cKit = app.ActiveCalKit ’read

C++ Syntax HRESULT get_ActiveCalKit (ICalkit * kit)
Interface IApplication

Read-only About Channels

ActiveChannel Property

Description Returns a handle to the Active Channel object. You can either (1) use the
handle directly to access channel properties and methods, or (2) set a
variable to the channel object. The variable retains a handle to the

40

original channel if another channel becomes active.
 VB Syntax (1) app.ActiveChannel.<setting>

 or
 (2) Set chan = app.ActiveChannel

Variable (Type) - Description
chan A Channel (object)
app An Application (object)
<setting> A channel property (or method) and arguments
Return Type Channel object
Default Not applicable

Examples 1) app.ActiveChannel.Averaging = 1

 2) Public chan as Channel
 Set chan = app.ActiveChannel

C++ Syntax HRESULT get_ActiveChannel(IChannel* *pVal)
Interface IApplication

Read-only

ActiveMeasurement Property

Description Returns a handle to the Active Measurement object. You can either (1) use
the handle directly to access measurement properties and methods, or (2) set
a variable to the measurement object. The variable retains a handle to the
original measurement.

 VB Syntax 1) app.ActiveMeasurement.<setting>
 or
 2) Set meas = app.ActiveMeasurement

Variable (Type) - Description
meas A Measurement (object)
app An Application (object)
<setting> A measurement property (or method) and arguments
Return Type Measurement object
Default None

Examples 1) app.ActiveMeasurement.Averaging = 1

 2) Public meas as Measurement
 Set meas = app.ActiveMeasurement

C++ Syntax HRESULT get_ActiveMeasurement(IMeasurement **ppMeas)
Interface IApplication

Read-only About Windows

ActiveNAWindow Property

Description Returns a handle to the Active Window object. You can either (1) use the
handle directly to access window properties and methods, or (2) set a

41

variable to the window object. The variable retains a handle to the original
window if another window becomes active.

 VB Syntax 1) app.ActiveNAWindow.<setting>
 or
 2) Set win = app.ActiveNAWindow

Variable (Type) - Description
win A NAWindow (object)
app An Application (object)
<setting> A NAWindow property (or method) and arguments
Return Type A NAWindow object
Default Not applicable

Examples Public win as NAWindow

 Set win = app.ActiveWindow

C++ Syntax HRESULT get_ActiveNAWindow(INAWindow **ppWindow)
Interface IApplication

Write/Read About Arrange Windows

ArrangeWindows Property

Description Sets or returns the arrangement of all the windows. Overlay, Stack2,
Split3 and Quad4 will create windows.
To control the state of the one window you have a handle to, use
app.WindowState.

 VB Syntax app.ArrangeWindows = value

Variable (Type) - Description
app An Application (object)
value (enum NAWindowModes) - Choose from:

0 - naTile
 1 - naCascade
 2 - naOverlay
 3 - naStack2
 4 - naSplit3
 5 - naQuad4

Return Type NAWindowModes
Default naTile

app.ArrangeWindow = naTile ’WriteExamples
arrWin = app.ArrangeWindows ’Read

C++ Syntax HRESULT put_ArrangeWindows(tagNAWindowModes newVal)
Interface IApplication

Write/Read About Modifying Cal Kits

CalKitType Property

Description Sets and returns a calibration kit type for calibration or to be used for kit

42

modification. To get a handle to this kit, use app.ActiveCalKit
 VB Syntax object.CalKitType = value

Variable (Type) - Description
object A calkit (object) or

 An Application (object).
Note: app.CalKitType and calkit.calKitType perform exactly the same
function.

value (enum naCalKit) - Calibration Kit type. Choose from:
1 - naCalKit_User1
 2 - naCalKit_User2
 4 - naCalKit_User3
 5 - naCalKit_User4
 ..
 ..
 ..
 49 - naCalKit_User49
 50 - naCalKit_User50

Return Type NACalKit
Default Not Applicable

calkit.CalKitType = naCalKit_User27Examples
kitype = app.CalKitType

C++ Syntax HRESULT get_CalKitType(tagNACalKit *pVal)

 HRESULT put_CalKitType(tagNACalKit newVal)
Interface IApplication

 ICalKit

Write/Read About Coupled Markers

CoupledMarkers Property

Description Sets and Reads the state of Coupled Markers (ON and OFF)
 VB Syntax app.CoupledMarkers = state

Variable (Type) - Description
app (object) - An Application object
state (boolean)

 False (0) - Turns Coupled Markers OFF
 True (1) - Turns Coupled Markers ON

Return Type Boolean
 0 - OFF
 1 - ON

Default OFF (0)

app.CoupledMarkers = True ’WriteExamples
coupl = app.CoupledMarkers ’Read

C++ Syntax
Interface IApplication

43

Write-Read

DisplayAutomationErrors Property

Description Enables or disables automation error messages from being displayed on the
screen.

 VB Syntax app.DisplayAutomationErrors = value

Variable (Type) - Description
app An application(object)
value (Boolean)

True allows error to show on display,
False turns error off from display.

Return Type Boolean
Default True

Examples Dim app As Application

Set app = New Application
app.DisplayAutomationErrors = False ’Turns off display
print app.DisplayAutomationErrors ’prints False

C++ Syntax HRESULT get_DisplayAutomationErrors(VARIANT_BOOL * Val);

HRESULT put_DisplayAutomationErrors(VARIANT_BOOL Val);
Interface IApplication2

Write/Read

ExternalALC Property

Description Sets or returns the source of the analyzer leveling control.
 VB Syntax app.ExternalALC = value

Variable (Type) - Description
app An Application (object)
value (boolean) - Choose from:

 True (or 1) - Leveling control supplied through the rear panel.
 False (or 0) - Leveling control supplied inside the analyzer

Return Type Boolean
Default 0

app.ExternalALC = True ’WriteExamples
extALC = app.ExternalALC ’Read

C++ Syntax HRESULT get_ExternalALC(VARIANT_BOOL *pVal)

 HRESULT put_ExternalALC(VARIANT_BOOL newVal)
 Interface IApplication

Write/Read About GPIB Fundamentals

GPIBMode Property

Description Changes the analyzer to a GPIB system controller or a talker/listener on

44

the bus. The analyzer must be the controller if you want to use it to send
commands to other instruments. The analyzer must be a talker/listener if
you want to send it commands from another PC.

 VB Syntax app.GPIBMode value

Variable (Type) - Description
app An Application (object)
value (enum NAGPIBMode) -Choose either:

 0 - naTalkerListener - the analyzer is a talker / listener
 1 - naSystemController - the analyzer is the system controller

Return Type Long Integer
Default 0 - naTalkerListener

app.GPIBMode = naTalkerListener ’WriteExamples
mode = app.GPIBMode ’Read

C++ Syntax HRESULT get_GPIBMode(tagGPIBModeEnum* eGpibMode)

 HRESULT put_GPIBMode(tagGPIBModeEnum eGpibMode)
Interface IApplication

Read-only

IDString Property

Description Returns the ID of the analyzer, including the Model number, Serial
Number, and the Software revision number.

 VB Syntax value = app.IDString

Variable (Type) - Description
app An Application (object)
value (string) - variable to contain the returned ID string
Return Type String
Default Not Applicable

Examples id = app.IDString

C++ Syntax HRESULT IDString(BSTR* IDString)
Interface IApplication

Read-only

NumberOfPorts Property

Description Returns the number of hardware source ports on the PNA.
 VB Syntax value = app.NumberOfPorts

Variable (Type) - Description
app An Application (object)
value (long integer) - variable to contain the returned value
Return Type (long integer)
Default Not Applicable

45

Examples iNumPorts = app.NumberOfPorts

C++ Syntax HRESULT NumberOfPorts(long* NumPorts)
Interface IApplication

Read-only About Options

Options Property

Description Returns a string identifying the analyzer option configuration.
 VB Syntax value = app.Options

Variable (Type) - Description
app An Application (object)
value (string) - variable to contain the returned string
Return Type String
Default Not Applicable

Examples availOptions = app.Options

C++ Syntax HRESULT Options(BSTR* OptionString)
Interface IApplication

Write/Read About Source Power

SourcePowerState Property

Description Turns Source Power ON and OFF
 VB Syntax app.SourcePowerState = state

Variable (Type) - Description
app An Application (object)
state (boolean)

 False (0) - Turns Source Power OFF
 True (1) - Turns Source Power ON

Return Type Boolean
 0 - Power OFF
 1 - Power ON

Default ON (1)

app.SourcePowerState = True ’WriteExamples
pwr = app.SourcePowerState ’Read

C++ Syntax HRESULT get_SourcePowerState(VARIANT_BOOL *pVal)

 HRESULT put_SourcePowerState(VARIANT_BOOL newVal)
Interface IApplication

Write/Read About System Impedance

46

SystemImpedanceZ0 Property

Description Sets and returns the impedance for the analyzer.
 VB Syntax app.SystemImpedanceZ0 = value

Variable (Type) - Description
app An Application (object)
value (double) Analyzer Impedance. Choose any number between 0 and 1000

ohms.
Return Type Double
Default 50

app.SystemImpedanceZ0 = 75 ’WriteExamples
z0 = app.SystemImpedanceZ0 ’Read

C++ Syntax HRESULT get_SystemImpedanceZ0(double dSystemZ0)

 HRESULT put_SystemImpedanceZ0(double *pdSystemZ0)
Interface IApplication

Write/Read About Trigger

TriggerDelay Property

Description Sets and reads the trigger delay. This delay is only applied while in
External Trigger mode. After an external trigger is applied, the start of
the sweep is delayed for the specified delay value plus any inherent
latency.

 VB Syntax app.TriggerDelay = value

Variable (Type) - Description
app An Application (object)
value Double- Trigger delay value. Range is from 0 to 1 second
Return Type Double
Default 0

app.TriggerDelay = .003 ’WriteExamples
delay = app.TriggerDelay ’Read

C++ Syntax HRESULT get_TriggerDelay(delay);

HRESULT put_TriggerDelay(.003)
Interface IApplication

Write/Read About Trigger Source

TriggerSignal Property

Description Sets or returns the trigger source.
 VB Syntax app.TriggerSignal = value

Variable (Type) - Description

47

app An Application (object)
value (enum NATriggerSignal) - Choose from:

0 - naTriggerInternal - free run
1 - naTriggerExternalPositive - a trigger signal is generated when a
TTL high is sensed on the external trigger pin of the Aux IO connector
2 - naTriggerExternalNegative - a trigger signal is generated when a
TTL low is sensed on the external trigger pin of the Aux IO connector.
3 - naTriggerManual - manual trigger source; use
app.ManualTrigger to send a trigger signal.
4 - naTriggerExternalHigh - a trigger signal is generated when a TTL
high is sensed on the external trigger pin of the Aux IO connector
5 - naTriggerExternalLow - a trigger signal is generated when a TTL low
is sensed on the external trigger pin of the Aux IO connector

Return Type Long Integer
Default naTriggerInternal

app.TriggerSignal = naTriggerExternalPositive ’WriteExamples
trigsign = app.TriggerSignal ’Read

C++ Syntax HRESULT get_TriggerSignal(tagNATriggerSignal *pSignal)

 HRESULT put_TriggerSignal(tagNATriggerSignal signal)
Interface IApplication

Write/Read. About Trigger

TriggerType Property

Description Sets or returns the trigger type which determines the scope of a trigger
signal.
Note: naGlobalTrigger is not compatible with TriggerMode =
naTriggerModePoint. If you set TriggerType = naGlobalTrigger, any
channel in naTriggerModePoint will be set to
naTriggerModeMeasurement .

 VB Syntax app.TriggerType = value

Variable (Type) - Description
app An Application (object)
value (enum NATriggerType) - Trigger type. Choose from:

 0 - naGlobalTrigger - a trigger signal is applied to all triggerable
channels
1 - naChannelTrigger - a trigger signal is applied to the current channel.
The next trigger signal will be applied to the next channel; not necessarily
channel 1-2-3-4.

Return Type Long Integer
Default naGlobalTrigger

app.TriggerType = naGlobalTrigger ’WriteExamples
trigtyp = app.TriggerType ’Read

C++ Syntax HRESULT get_TriggerType(tagNATriggerType *pTrigger)

 HRESULT put_TriggerType(tagNATriggerType trigger)
Interface IApplication

48

Write/Read About Port Extensions

VelocityFactor Property

Description Sets the velocity factor to be used with Electrical Delay and Port
Extensions.

 VB Syntax app.VelocityFactor = value

Variable (Type) - Description
app An Application (object)
value (double) - Velocity factor. Choose a number between: 0 and 10

 (.66 polyethylene dielectric; .7 teflon dielectric)
Note: to specify the electrical delay for reflection measurements (in both
directions), double the velocity factor.

Return Type Double
Default 1

app.VelocityFactor = .66 ’WriteExamples
RelVel = app.VelocityFactor ’Read

C++ Syntax HRESULT get_VelocityFactor(double *pVal)

 HRESULT put_VelocityFactor(double newVal)
Interface IApplication

Write/Read

Visible Property

Description Makes the Network Analyzer application visible or not visible. In the Not
Visible state, the analyzer cycle time for making measurements can be
significantly faster because the display does not process data.

 VB Syntax app.Visible = state

Variable (Type) - Description
app An Application (object)
state (boolean)

 0 - Network Analyzer application NOT visible
 1 - Network Analyzer application IS visible

Return Type Boolean
 0 - Not visible
 1 - visible

Default 1

app.Visible = 0 ’WriteExamples
vis = app.Visible ’Read

C++ Syntax HRESULT get_Visible(VARIANT_BOOL * bVisible)

 HRESULT put_Visible(VARIANT_BOOL bVisible)
Interface IApplication

49

About Analyzer Events

OnCalEvent

Description Triggered by a calibration event. See a list of CAL Events.
Note: Some Severe Events are also used as Error Messages

 VB Syntax Sub app_OnCalEvent(ByVal eventID As Variant, ByVal chanNum As
Variant, ByVal measNum As Variant)

Variable (Type) - Description
app An Application (object)
eventID Code number of the event which occurred
chanNum Channel Number of the event
measNum Measurement Number of the event
Return Type Not Applicable
Default Not Applicable

Examples Sub pna_OnCalEvent(ByVal eventID As Variant, ByVal channelNumber

As Variant, ByVal measurementNumber As Variant)
 ’
 MsgBox ("A Calibration event has occured")
 End Sub

C++ Syntax HRESULT OnCalEvent(VARIANT eventID, VARIANT channelNumber,

VARIANT measurementNumber)
Interface IApplication

About Analyzer Events

OnChannelEvent

Description Triggered by a channel event. See a list of Channel Events
Note: Some Severe Events are also used as Error Messages

 VB Syntax Sub app_OnChannelEvent(ByVal eventID As Variant, ByVal chanNum
As Variant)

Variable (Type) - Description
app An Application (object)
eventID Code number of the event which occurred
chanNum Channel Number of the event
Return Type Not Applicable
Default Not Applicable

Examples Sub pna_OnChannelEvent(ByVal eventID As Variant, ByVal

channelNumber As Variant)
 MsgBox "A channel event occured"
 End Sub

C++ Syntax HRESULT OnChannelEvent(VARIANT eventID, VARIANT

channelNumber)
Interface IApplication

50

About Analyzer Events

OnDisplayEvent

Description Triggered by a display event. See a list of Display Events
Note: Some Severe Events are also used as Error Messages

 VB Syntax Sub app_OnDisplayEvent(ByVal eventID As Variant, ByVal winNum As
Variant, ByVal traceNum As Variant)

Variable (Type) - Description
app An Application (object)
eventID Code number of the event which occurred
winNum Window Number of the event
traceNum Trace Number of the event
Return Type Not Applicable
Default Not Applicable

Examples Sub pna_OnDisplayEvent(ByVal eventID As Variant, ByVal

windowNumber As Variant, ByVal traceNumber As Variant)
 MsgBox ("A Display event has occured")
 End Sub

C++ Syntax HRESULT OnDisplayEvent(VARIANT eventID, VARIANT

windowNumber, VARIANT traceNumber)
Interface IApplication

About Analyzer Events

OnHardwareEvent

Description Triggered by a hardware event. See a list of Hardware Events
Note: Some Severe Events are also used as Error Messages

 VB Syntax Sub app_OnHardwareEvent(ByVal eventID As Variant)

Variable (Type) - Description
app An Application (object)
eventID Code number of the event which occurred
Return Type Not Applicable
Default Not Applicable

Examples Private Sub pna_OnHardwareEvent(ByVal eventID As Variant)

 MsgBox ("A Hardware event has occured")
 End Sub

C++ Syntax HRESULT OnHardwareEvent(VARIANT eventID)
Interface IApplication

About Analyzer Events

51

OnMeasurementEvent

Description Triggered by a measurement event. See a list of Measurement Events.
Note: Some Severe Events are also used as Error Messages

 VB Syntax Sub app_OnMeasurementEvent(ByVal eventID As Variant, ByVal
measNum As Variant)

Variable (Type) - Description
app An Application (object)
eventID Code number of the event which occurred
measNum Measurement Number of the event
Return Type Not Applicable
Default Not Applicable

Examples Private Sub pna_OnMeasurementEvent(ByVal eventID As Variant, ByVal

measurementNumber As Variant)

 MsgBox ("A Measurement event has occured")

 End Sub

C++ Syntax HRESULT OnMeasurementEvent(VARIANT eventID, VARIANT

measurementNumber)
Interface IApplication

About Analyzer Events

OnSCPIEvent

Description Triggered by a SCPI event. See a list of SCPI Events
Note: Some Severe Events are also used as Error Messages

 VB Syntax Sub app_OnSCPIEvent(ByVal eventID As Variant)

Variable (Type) - Description
app An Application (object)
eventID Code number of the event which occurred
Return Type Not Applicable
Default Not Applicable

Examples Private Sub pna_OnSCPIEvent(ByVal eventID As Variant)

 MsgBox ("A SCPI event has occured")
 End Sub

C++ Syntax HRESULT OnSCPIEvent(VARIANT eventID)
Interface IApplication

About Analyzer Events

52

OnSystemEvent

Description Triggered by a system event. See a list of System Events, also known as
general events.
Note: Some Severe Events are also used as Error Messages

 VB Syntax Sub app_OnSystemEvent(ByVal eventID As Variant)

Variable (Type) - Description
app An Application (object)
eventID Code number of the event which occurred
chanNum Channel Number of the event
Return Type Not Applicable
Default Not Applicable

Examples Private Sub pna_OnSystemEvent(ByVal eventID As Variant)

 MsgBox ("A System event has occured")
 End Sub

C++ Syntax HRESULT OnSystemEvent(VARIANT eventID)
Interface IApplication

About Analyzer Events

OnUserEvent

Description Reserved for future use.
 VB Syntax Sub app_OnUserEvent

IApplication2 Interface

IApplication2 Interface

Description
This interface extends the IApplication interface to provide for setting and reading the
trigger delay and to enable and disable displaying automation errors

Methods Description
None
Properties Description
DisplayAutomationErrors Enables or disables automation error messages from being

displayed on the screen.

Collection Methods and Properties

53

Common Methods and Properties
The following Methods and Properties are common to Objects and Collections:
Item Method Returns an object from the collection of objects.
Remove Method Removes an item from a collection of objects.
Add Method Adds an object to the collection.
Count Property Returns the number of items in a collection of objects.
Parent Property Returns a handle to the parent object of the collection object

being referred to in the statement.
State Property Turns an Object ON and OFF.

Write-only

Item Method

Description Returns an object from the collection of objects.
Note: The order of objects within a collection cannot be assumed.

 VB Syntax Object[.Item](n)

Variable (Type) - Description
Object Any of the following (objects):

 CalFactorSegments collection
 Cal Sets collection
 Channels collection
 LimitTest collection
 Measurements collection
 NaWindows collection
 PowerLossSegments collection
 PowerSensors collection
 Segments collection
 Traces collection

.Item Optional - Item is the default property of a collections object and therefore
can be called implicitly. For example, the following two commands are
equivalent:
Channels.Item(3).Averaging = 1
 Channels(3).Averaging = 1

n (variant) - number of the item in the collection.
Note: the Measurements and Traces collections allow you to specify the
name of the measurement as a string. For example:
measCollection("CH_S11_1").InterpolateMarkers

Return Type (Object)
Default Not Applicable

Examples For i = 1 to Traces.Count -1

 Traces.Item(i).YScale = .5dB
 Next i

C++ Syntax HRESULT Item(VARIANT index, <interface>** pItem)
Interfaces ICalFactorSegments

 ICal Sets
 IChannels
 ILimitTest
 IMeasurements
 INaWindows

54

 IPowerLossSegments
 IPowerSensors
 ISegments
 ITraces

Read-only

Count Property

Description Returns the number of items in a collection of objects.
 VB Syntax object.Count

Variable (Type) - Description
object Any of the following (objects):

Cal Sets collection
 CalFactorSegments collection
 Channels collection
 LimitTest collection
 Measurements collection
 NAWindows collection
 PowerLossSegments collection
 PowerSensors collection
 Segments collection
 Traces collection

Return Type Long Integer
Default Not applicable

Examples numofchans = chans.Count ’return the number of channels -Read

C++ Syntax HRESULT get_Count(long *p<interface>)
Interface ICal Sets

 ICalFactorSegments
 IChannels
 ILimitTest
 IMeasurements
 INAWindows
 IPowerLossSegments
 IPowerSensors
 ISegments
 ITraces

Read-only

Parent Property

Description Returns a handle to the parent object of the collection object being
refered to in the statement. The parent property allows the user to
traverse from an object back up the object hierarchy.

 VB Syntax object.Parent

Variable (Type) - Description
object Channels collection

55

 Channel object
 Measurements collection
 NAWindows collection
 Traces collection
 Segments collection
 PowerSensors collection
 CalFactorSegments collection
 PowerLossSegments collection

Return Type Object
Default Not Applicable

Examples parentobj = chans.Parent ’returns a handle to the parent object

(Application) of the chans collection. -Read

C++ Syntax HRESULT get_Parent(IApplication* *pApplication); //IChannels,

IChannel, IMeasurements and INAWindows
HRESULT get_Parent(IChannel* *pChannel); //ITraces
HRESULT get_Parent(INAWindow* *pWindow); //ISegments
HRESULT get_Parent(IPowerSensor* *pSensor); //ICalFactorSegments
HRESULT get_Parent(ISourcePowerCalibrator* *pCalibrator);
//IPowerSensors and IPowerLossSegments

Interface IChannels
IChannel
IMeasurements
INAWindows
ITraces
ISegments
IPowerSensors
ICalFactorSegments
IPowerLossSegments

Write-only

Remove Method

Description Removes an item from a collection of objects.
 VB Syntax Object.Remove item

Variable (Type) - Description
Object Any of the following (objects)

CalFactorSegments collection
 Cal Sets collection
 Measurements collection
 NAWindows collection
 PowerLossSegments collection
 Segments collection
Note: Segments, CalFactorSegments, and PowerLossSegments have
an OPTIONAL argument [size] referring to the number of segments to
remove, starting with the item parameter.

item (variant) - Item number to be removed
Return Type Not Applicable
Default Not Applicable

Examples Measurements.Remove 3 ’Removes measurement 3

56

 segments.Remove 2,20 ’Removes 20 segments (2 - 21)

C++ Syntax HRESULT Remove(VARIANT index); //Measurements

 HRESULT Remove(VARIANT index); //Cal Sets
HRESULT Remove(long windowNumber); //NAWindows
HRESULT Remove(VARIANT index, long size); //Segments
HRESULT Remove(VARIANT index, long size); //CalFactorSegments
HRESULT Remove(VARIANT index, long size); //PowerLossSegments

Interface IMeasurements
INAWindows
ISegments
ICalFactorSegments
 ICal Sets
IPowerLossSegments

Write/Read

State Property

Description Turns an Object ON and OFF.
 VB Syntax object.State = value

Variable (Type) - Description
object Applies to any of the following:

 Gating (object)
 LimitTest (object)
 Port Extension (object)
 Segment (object)
 Transform (object)

value (boolean) -
0 - Turns obj OFF
 1 - Turns obj ON

Return Type Long Integer
Default Depends on the object:

 0 - Gating
 0 - LimitTest
 0 - Port Extension
 1 - Segment
 0 - Transform

Seg.State = 1 ’Turns the segment object ON -WriteExamples
tran = Trans.State ’returns the state of Transform -Read

C++ Syntax HRESULT get_State(VARIANT_BOOL *pVal)

 HRESULT put_State(VARIANT_BOOL newVal)
Interface ISegment

 ITransform
 IGating
 ILimitTest
 IPortExtension

Calibrator Object

57

Calibrator Object

Description
The Calibrator object is a child of the channel. It is a vehicle to perform calibration.
There must be a measurement present for the calibrator to use or you will receive an error (no
measurement found). Therefore, to perform a 2-port cal, you must have any S-parameter
measurement on the channel. For a 1-port measurement, you must have the measurement (S11
or S22) on the channel. The same is true for a response measurement.
New for Release 2.0 and greater:
Before you use the calibrator object to download or upload error terms, you must first specify the
calibration type and ports that the calibration data applies to. This is because a Cal Set can hold
more than one Cal Type and more than one combination of ports. So you must first do
Calibrator.SetCalInfo (caltype, port1, port2)
Learn about reading and writing Calibration data.

There are a number of approaches to calibration with the calibrator object:
• You can collect data yourself and download it to the ACQUISITION buffer. The acquisition buffer

holds the actual measured data for each standard. See the PNA data map.
1. Calibrator.SetCalInfo
2. Connect a standard
3. Trigger a sweep
4. Retrieve the data for the standard
5. Download the data - calibrator.putStandard
6. Repeat for each standard
7. Calibrator.CalculateErrorCoefficients

• You can tell the calibrator to acquire a standard. In this case, the calibrator collects the data and
places it in the ACQUISITION buffer.

1. Calibrator.SetCalInfo
2. Connect a standard
3. Calibrator.AcquireCalStandard2
4. Repeat for each standard
5. Calibrator.CalcuateErrorCoefficients

• You can put previously-retrieved error terms in the error correction buffer.
1. PutErrorTerm
2. Repeat for each term
3. Measurement.Caltype = pick one

• You can also "piece together" a 2-port cal from two 1-port cals (S11 and S22) and four response
(thru) cals. The system will detect that all the standards needed for a 2-port cal have been acquired
even though they may not have gathered at the same time.

Method Description
AcquireCalConfidenceCheckECAL Transfers ECAL confidence data into analyzer

memory
AcquireCalStandard Obsolete - use AcquireCalStandard2
AcquireCalStandard2 Causes the analyzer to measure a calibration

standard. Also provides for sliding load.
CalculateErrorCoeffecients Generates Error Terms from standard and

actual data in the error correction buffer.
DoECAL1Port Completes a 1 port ECAL
DoECAL2Port Completes a 2 port ECAL
DoneCalConfidenceCheckECAL Concludes an ECAL confidence check
GetECALModuleInfo Returns information about the attached

module
getErrorTerm Obsolete - replaced by CalSet.getErrorTerm

58

 Retrieves error term data for the active
calibration.

getStandard Obsolete - replaced by CalSet.getStandard
Retrieves calibration data from the aquisition
data buffer (before error-terms are applied).

putErrorTerm Obsolete - replaced by CalSet.putErrorTerm
Puts error term data into the error-correction
buffer for the active calibration.

putStandard Obsolete - replaced by CalSet.putStandard
Puts data into the acquisition data buffer
(before error-terms are applied)

SaveCalSets Writes new or changed Cal Sets out to disk.
Shared with the CalManager Object

setCalInfo Specifies the type of calibration and prepares
the internal state for the rest of the calibration.

Property Description
AcquisitionDirection Specifies the direction in a 2-Port cal using

one set of standards.
ECALCharacterization Specifies which set of characterization data

within an ECal module will be used for ECal
operations with that module.

ECAL Isolation Include Isolation in ECAL calibration
ECALPortMap Specifies which ports of the ECal module are

connected to which ports of the PNA for the
DoECAL1Port and DoECAL2Port methods
when the OrientECALModule property =
False.

IsECALModuleFound Tests communication between the PNA and
ECAL Module

OrientECALModule Specifies if the PNA should perform
orientation of the ECal module during
calibration.

Simultaneous2PortAcquisition Allows the use of 2 sets of standards at the
same time.

Write-only About ECAL Confidence Check

AcquireCalConfidenceCheckECAL Method

Description Transfers confidence data from the specified ECal module into the

measurement’s memory trace. The data is transferred to the specified S-
parameter on the same channel as this Calibrator object.
 The characterization within the ECal module that the confidence data will
be read from is specified by the ECALCharacterization property on the
ICalibrator2 interface. The default value of the ECALCharacterization
property is naECALFactoryCharacterization.

 VB Syntax cal.AcquireCalConfidenceCheckECAL Sparam[,ecalModule]

Variable (Type) - Description
cal A Calibrator (object)
Sparam (String) S-parameter to transfer confidence data to. This parameter must

59

be present on the same channel as the calibrator object.
ecalModule (enum NAECALModule) – Optional argument. ECal module. Choose

from:
0 - naECALModule_A (default, if unspecified)
1 - naECALModule_B

Return Type None
Default Not applicable

Examples Cal.AcquireCalConfidenceCheckECAL "S11", naECALModule_A

C++ Syntax HRESULT AcquireCalConfidenceCheckECAL(_bstr_t strParameter,

enum NAECALModule ecalModule);
Interface ICalibrator

Write-only About Calibration Standards

AcquireCalStandard Method - Obsolete

Description Note: This command has been replaced by AcquireCalStandard2

Method, which provides for acquisition of sliding load standards. All other
functionality is identical.

 VB Syntax cal.AcquireCalStandard std[,index]

Variable (Type) - Description
cal A Calibrator (object)
std (enum NACalClass) Standard to be measured. Choose from:

1 - naClassA

2 - naClassB

3 - naClassC

4 - naClassD

5 - naClassE

6 - naReferenceRatioLine

7 - naReferenceRatioThru

SOLT Standards

1 - naSOLT_Open

2 - naSOLT_Short

3 - naSOLT_Load

4 - naSOLT_Thru

5 - naSOLT_Isolation

TRL Standards

1 - naTRL_Reflection

60

2 - naTRL_Line_Reflection

3 - naTRL_Line_Tracking

4 - naTRL_Thru

5 - naTRL_Isolation

index (long integer) number of the standard. Optional argument - Used if there
is more than one standard required to cover the necessary frequency
range. If unspecified, value is set to 0.

Return Type None
Default Not Applicable

Examples Cal.AcquireCalStandard naSOLT_Thru ’Write

C++ Syntax HRESULT AcquireCalStandard(tagNACalClass enumClass, short

standardNumber)
Interface ICalibrator

Write-only About Calibration Standards

AcquireCalStandard2 Method

Description Measures the specified standard from the selected calibration kit. The

calibration kit is selected using app.CalKitType.
For 2-port calibration, it is also necessary to specify direction with
AcquisitionDirection.

Note: To omit Isolation from a 2-port calibration, do not Acquire a cal
standard for naSOLT_Isolation

Note: This command replaces AcquireCalStandard. This command
provides for the acquisition of a sliding load cal. All other functionality is
identical.

 VB Syntax cal.AcquireCalStandard std[,index],slide

Variable (Type) - Description
cal A Calibrator (object)
std (enum NACalClass) Standard to be measured. Choose from:

1 - naClassA

2 - naClassB

3 - naClassC

4 - naClassD

5 - naClassE

6 - naReferenceRatioLine

7 - naReferenceRatioThru

61

SOLT Standards

1 - naSOLT_Open

2 - naSOLT_Short

3 - naSOLT_Load

4 - naSOLT_Thru

5 - naSOLT_Isolation

TRL Standards

1 - naTRL_Reflection

2 - naTRL_Line_Reflection

3 - naTRL_Line_Tracking

4 - naTRL_Thru

5 - naTRL_Isolation

index (long integer) number of the standard. Optional argument - Used if there
is more than one standard required to cover the necessary frequency
range. If unspecified, value is set to 0.

slide (enum as NACalStandardSlidingState) State of the sliding load. The slide
should be set a minimum of four times. Seven is the maximum that can
be stored. See an example of a sliding load cal. Choose from:
0 - naNotSlidingStd - not using a sliding load
1 - naSlideIsSet - slide is set for acquisition
2 - naSlideIsDone - this next acquisition will be the last. Calculations will
then be performed.

Return Type None
Default Not Applicable

Examples Cal.AcquireCalStandard naSOLT_Thru,naNotSlidingStd

 Cal.AcquireCalStandard naSOLT_Thru,2,naNotSlidingStd
 ’measures the second standard listed in the class of naSOLT_Thru

C++ Syntax HRESULT AcquireCalStandard2(tagNACalClass

enumClass,standardPosition, naNotSlidingStd,
NACalStandardSlidingState slidingStandardState)

Interface ICalibrator

Write-only About Performing a Calibration

CalculateErrorCoefficients Method

Description This method is the final call in a calibration process. It calculates error-
correction terms and turns error-correction ON.

 VB Syntax cal.CalculateErrorCoeffecients

62

Variable (Type) - Description
cal Calibrator (object)
Return Type Not Applicable
Default Not Applicable

Examples Cal.CalculateErrorCoeffecients

C++ Syntax HRESULT CalculateErrorCoefficients()
Interface ICalibrator

Write-only About Calibration

DoECAL1Port Method

Description Does a 1-Port calibration using an ECAL module. You must first have a
1-port measurement active to perform the calibration.
The characterization within the ECal module that will be used for the
calibration is specified by the ECALCharacterization property on the
ICalibrator2 interface. The default value of the ECALCharacterization
property is naECALFactoryCharacterization.

 VB Syntax cal.DoECAL1Port [port][,module]

Variable (Type) - Description
cal A Calibrator (object)
port (long integer) Optional argument - Port number to calibrate. Choose

from:
 1 - Calibrate port 1 (default if unspecified)
 2 - Calibrate port 2

module (enum NAEcalModule) Optional argument - ECAL module. Choose
from:

 0 - naECALModule_A - (default if unspecified)
 1 - naECALModule_B

Return Type None
Default Not Applicable

Examples cal.DoECAL1Port,2,naECALModule_B

C++ Syntax HRESULT DoECAL1Port(long port, tagNAECALModule ecalModule);
Interface ICalibrator

Write-only About Calibration

DoECAL2Port Method

Description Does a 2-Port calibration using an ECAL module. You must first have a
2-port measurement active to perform the calibration.
The characterization within the ECal module that will be used for the
calibration is specified by the ECALCharacterization property on the
ICalibrator2 interface. The default value of the ECALCharacterization
property is naECALFactoryCharacterization.

 VB Syntax cal.DoECAL2Port[portA][,portB][,module]

Variable (Type) - Description

63

cal A Calibrator (object)
portA (long integer) Optional argument - Number of the receive port to

calibrate.
 Choose from:
 1 - Calibrate port 1 (default, if unspecified)
 2 - Calibrate port 2
 3 - Calibrate port 3 (if the PNA has 3 ports)

portB (long integer) Optional argument - Number of the source port to
calibrate. Choose from:
 1 - Calibrate port 1 (default, if unspecified)
 2 - Calibrate port 2
 3 - Calibrate port 3 (if the PNA has 3 ports)

module (enum NAECALModule) – Optional argument. ECal module.
Choose from:
 0 - naECALModule_A (default, if unspecified)
 1 - naECALModule_B

Return Type None
Default Not Applicable

Examples cal.DoECAL2Port,1,2,naECALModule_B

C++ Syntax HRESULT DoECAL2Port(long rcvport, long srcPort, tagNAECALModule

ecalModule);
Interface ICalibrator

Write-only About ECAL Confidence Check

DoneCalConfidenceCheckECAL Method

Description Concludes the Confidence Check and sets the ECal module back into the

idle state.
 VB Syntax cal.DoneCalConfidenceCheckECAL

Variable (Type) - Description
cal A Calibrator (object)
Return Type None
Default None

Examples cal.DoneCalConfidenceCheckECAL

C++ Syntax HRESULT DoneCalConfidenceCheckECAL();
Interface ICalibrator

Read-only

GetECALModuleInfo Method

Description Returns the following information about the connected ECAL module:
model number, serial number, connector type, calibration date, min and

64

max frequency.
The characterization within the ECal module that this information will be
read from is specified by the ECALCharacterization property on the
ICalibrator2 interface. The default value of the ECALCharacterization
property is naECALFactoryCharacterization.

 VB Syntax moduleInfo = cal.GetECALModuleInfo (module)

Variable (Type) - Description
moduleInfo (string) - variable to store the module information
cal A Calibrator (object)
module (enum NAECALModule) – ECAL module. Choose from:

0 - naECALModule_A
1 - naECALModule_B

Return Type String
Default Not Applicable

Examples info = cal.GetECALModuleInfo(naECALModule_A)

Example return string:
ModelNumber: 85092-60007, SerialNumber: 01386, ConnectorType:
N5FN5F, PortAConnector: Type N (50) female, PortBConnector: Type N
(50) female, MinFreq: 30000, MaxFreq: 9100000000, NumberOfPoints:
250, Calibrated: July 4 2002

C++ Syntax HRESULT GetECALModuleInfo(tagNAECALModule ecalModule, BSTR*

info);
Interface ICalibrator

Read-only About Measurement Calibration

GetErrorTerm Method - Obsolete

Description Note: This command is replaced by CalSet.getErrorTerm.

Retrieves error term data that is used for error correction. The data is complex
pairs. Memory for the returned Variant is allocated by the server. The server
returns a variant containing a two-dimensional safe Array.
This method returns a variant which is less efficient than getErrorTermComplex
on the ICalData interface.
Learn about reading and writing Calibration data.

 VB Syntax data = cal.getErrorTerm term, rcv. src

Variable (Type) - Description
data Variant array to store the data.
cal A Calibrator (object)
term (enum As NaErrorTerm). Choose from:

naErrorTerm_Directivity_Isolation
 naErrorTerm_Match
 naErrorTerm_Tracking

rcv (long integer) - Receiver Port
src (long integer) - Source Port

To get this Specify these parameters:
Error Term term rcv src
Fwd Directivity naET_Directivity Isolation 1 1
Rev Directivity naET_Directivity Isolation 2 2

65

Fwd Isolation naET_Directivity Isolation 2 1
Rev Isolation naET_Directivity Isolation 1 2
Fwd Source Match naErrorTerm_Match 1 1
Rev Source Match naErrorTerm_Match 2 2
Fwd Load Match naErrorTerm_Match 2 1
Rev Load Match naErrorTerm_Match 1 2
Fwd Reflection Tracking naErrorTerm_Tracking 1 1
Rev Reflection Tracking naErrorTerm_Tracking 2 2
Fwd Trans Tracking naErrorTerm_Tracking 2 1
Rev Trans Tracking naErrorTerm_Tracking 1 2

Return Type Variant

Default Not Applicable

Examples Dim varError As Variant

 varError = cal.getErrorTerm(naErrorTerm_Tracking,2,1)

C++ Syntax HRESULT getErrorTerm(tagNAErrorTerm ETerm, long ReceivePort, long

SourcePort, VARIANT* pData)
Interface ICalibrator

Read-only About Cal Sets

GetStandard Method - Obsolete

Description Note: This method has been replaced by

calSet.getStandard.

Retrieves data that was acquired for a specific
cal standard. This method returns the actual
measurement data - not the calculated error
terms.
This method returns a variant which is less
efficient than getStandardComplex on the
ICalData interface.
Learn about reading and writing Calibration
data.

 VB Syntax data = cal.getStandardclass,rcv,src

Variable (Type) - Description
data Variant array to store the data.
cal A Calibrator (object)
class (enum NACalClass) Standard to be

measured. Choose from:
1 - naClassA

2 - naClassB

3 - naClassC

4 - naClassD

5 - naClassE

6 - naReferenceRatioLine

66

7 - naReferenceRatioThru

SOLT Standards

1 - naSOLT_Open

2 - naSOLT_Short

3 - naSOLT_Load

4 - naSOLT_Thru

5 - naSOLT_Isolation

TRL Standards

1 - naTRL_Reflection

2 - naTRL_Line_Reflection

3 - naTRL_Line_Tracking

4 - naTRL_Thru

5 - naTRL_Isolation

rcv (long integer) - Receiver Port
src (long integer) - Source Port
Return Type (variant) - two-dimensional array (0:1,

0:NumberOfPoints-1)
Default Not Applicable

Examples Dim varStd As Variant

 varStd = cal.getStandard(naSOLT_Thru,2,1)

C++ Syntax HRESULT raw_getStandard(tagNACalClass

stdclass, long ReceivePort, long SourcePort,
VARIANT* pData)

Interface ICalibrator

Write-only About Measurement Calibration

PutErrorTerm Method - Obsolete

Description Note: This command is replaced by CalSet.putErrorTerm.

Puts variant error term data into the error-correction buffer. See Accessing
data.
Learn about reading and writing Calibration data.

 VB Syntax cal.putErrorTerm(term,rcv, src, data)

Variable (Type) - Description
cal A Calibrator (object)
term (enum As NaErrorTerm)

67

naErrorTerm_Directivity_Isolation
 naErrorTerm_Match
 naErrorTerm_Tracking

rcv (long integer) - Receiver Port
src (long integer) - Source Port
data (variant) Error term data in a two-dimensional array (0:1, 0:numpts-1).

To get this Specify these parameters:
Error Term term rcv src
Fwd Directivity naET_Directivity Isolation 1 1
Rev Directivity naET_Directivity Isolation 2 2
Fwd Isolation naET_Directivity Isolation 2 1
Rev Isolation naET_Directivity Isolation 1 2
Fwd Source Match naErrorTerm_Match 1 1
Rev Source Match naErrorTerm_Match 2 2
Fwd Load Match naErrorTerm_Match 2 1
Rev Load Match naErrorTerm_Match 1 2
Fwd Reflection Tracking naErrorTerm_Tracking 1 1
Rev Reflection Tracking naErrorTerm_Tracking 2 2
Fwd Trans Tracking naErrorTerm_Tracking 2 1
Rev Trans Tracking naErrorTerm_Tracking 1 2
Fwd Trans Tracking naErrorTerm_Tracking 2 1

Return Type Not Applicable
Default Not Applicable

Examples Dim varError As Variant

 varError = cal.putErrorTerm (naErrorTerm_Tracking,2,1,VarData)

C++ Syntax HRESULT putErrorTerm(tagNAErrorTerm ETerm, long ReceivePort, long

SourcePort, VARIANT varData)
Interface ICalibrator

Write-only About Cal Sets

SaveCalSets Method

Description Writes new or changed Cal Sets out to disk. All Cal Sets are saved in a

single file (PNACal Sets.dat). This file is updated at the following times:
• On Application Exit
• When a Cal Set has been deleted
• When a calibration has been performed through the front panel

interface
• When this method is called

Call this method whenever the Cal Set data has been changed remotely.
Learn more about reading and writing Cal data using COM
Note: There is also a Save method on the ICalSet interface. The
difference is the following:
 ICalSet::Save - saves the data for the current Cal Set to the disk.
 ICalManager/Calibrator::SaveCalSets - saves every Cal Set that
currently exists in the instrument to the disk.

68

 VB Syntax object.SaveCalSets

Variable (Type) - Description
object (object) - A CalManager object or a Calibrator object
Return Type None
Default Not Applicable

Example calMgr.SaveCalSets

C++ Syntax HRESULT SaveCalSets();
Interface ICalManager

 ICalibrator

Write-only About Performing a Calibration

SetCalInfo Method

Description Specifies the type of calibration. This method should be the first method
called on the calibrator object. It prepares the internal state for the rest of
the calibration. Learn more about reading and writing Cal data using
COM

 VB Syntax cal.SetCalInfo(type,rcvPort,srcPort)

Variable (Type) - Description
cal A Calibrator (object)
type (enum NACalType) - Calibration type. Choose from:

0 - naCalType_Response_Open
 1 - naCalType_Response_Short
 2 - naCalType_Response_Thru
 3 - naCalType_Response_Thru_And_Isol
 4 - naCalType_OnePort
 5 - naCalType_TwoPort_SOLT
 6 - naCalType_TwoPort_TRL
 7 - naCalType_None
 8 - naCalType_ThreePort_SOLT

Note: The analyzer can measure both ports simultaneously, assuming
you have two of each standard type. For a 2-port cal, See
cal.Simultaneous2PortAcquisition

Note: For 1-port cals, the source port = receiver port. For 2-port SOLT
and TRL, it doesn’t matter which port is specified as source and receiver

rcvPort (long integer) - Receiver Port
srcPort (long integer) - Source Port
Return Type NACalType
Default 7- naCalType_None

Examples cal.setCalInfo(naCalType_Response_Open,1,1)

C++ Syntax HRESULT SetCalInfo(tagNACalType calType,long portA, long portB)
Interface ICalibrator

Read / Write About Performing a Calibration

69

AcquisitionDirection Property

Description Specifies the direction of each part of a 2-port calibration.
 VB Syntax cal.AcquisitionDirection = value

Variable (Type) - Description
cal A Calibrator (object)
value (enum NADirection) - Choose from:

0 - naForward - measures the forward direction
 1 - naReverse - measures the reverse direction

Return Type Long Integer
Default naForward

Examples cal.AcquisitionDirection = naForward

C++ Syntax HRESULT AcquisitionDirection(tagNADirection dir);
Interface ICalibrator

Read/Write About ECAL

ECALIsolation Property

Description Specifies whether the acquisition of the ECal calibration should include
isolation or not.

 VB Syntax cal.ECALIsolation=value

Variable (Type) - Description
cal A Calibrator (object)
value (boolean)

False (0) - Exclude Isolation
True (1) - Include Isolation

Return Type Boolean
Default False (0)

Examples Dim oPNA as AgilentPNA835x.Application

Dim oCal as Calibrator
Set oPNA = CreateObject("AgilentPNA835x.Application",
"MachineName")
Set oCal = oPNA.ActiveChannel.Calibrator
’ Uncomment the following line to have the cal include
isolation
’ oCal.ECALIsolation = True
’ Uncomment the following line to have the cal omit
isolation
’oCal.ECALIsolation = False
oCal.DoECAL2Port ’ Do the cal

C++ Syntax void PutECALIsolation (VARIANT_BOOL bIsolationState);

 VARIANT_BOOL GetECALIsolation();
Interface Calibrator

Write/Read

70

ECALPortMap Property

Description Specifies which ports of the ECal module are connected to which ports of

the PNA for the DoECAL1Port and DoECAL2Port methods when the
OrientECALModule property = False.

 VB Syntax cal.ECALPortMap = value

Variable (Type) - Description
cal A Calibrator (object)
value (string)

This parameter is expected to be formatted in the following manner:
ax,by,…zz
where a, b and z are ports on the module (i.e., A and B on 2-port ECal
modules), and x, y and z are PNA port numbers (i.e., 1 and 2 on a 2-port
PNA). Ports of the module which are not being used for calibration
should be omitted from the string. For example, if we had a 4-port ECal
module with port A connected to PNA port 2, port B to PNA port 3, port C
not connected, and port D to PNA port 1, the string would be:
A2,B3,D1
DoECAL1Port or DoECAL2Port methods will fail if the port numbers
passed to those methods are not in the string of this property and
OrientECALModule property = False.

Return Type String
Default Not Applicable

Examples Dim cal As Calibrator

Dim sPortMap As String
Set cal = PNAapp.ActiveChannel.Calibrator
cal.ECALPortMap = “a2,b1” 'Write
sPortMap = cal.ECALPortMap 'Read

C++ Syntax HRESULT put_ECALPortMap(tagNAECALModule ecalModule, BSTR

strPortMap);
HRESULT get_ECALPortMap(tagNAECALModule ecalModule, BSTR
*strPortMap);

Interface ICalibrator3

Read only About ECAL

IsECALModuleFound Property

Description Tests communication between the PNA and the specified ECal module.
 VB Syntax moduleFound = cal.IsECALModuleFound (module)

Variable (Type) - Description
moduleFound (boolean) - Variable to store the returned test result.

True - The PNA identified the presence of the specified ECal module.
False - The PNA did NOT identify the presence of the specified ECal
module.

cal (object) - A Calibrator object
module (enum NAECALModule) – ECAL module. Choose from:

0 - naECALModule_A
1 - naECALModule_B

Return Type Boolean

71

Default Not applicable

Examples Set cal = pna.ActiveChannel.Calibrator

moduleFound = cal.IsECALModuleFound(naECALModule_A)

C++ Syntax HRESULT get_IsECALModuleFound(tagNAECALModule

moduleNumber, VARIANT_BOOL *bModuleFound);
Interface Calibrator

Write/Read

OrientECALModule Property

Description Specifies if the PNA should perform orientation of the ECal module during

calibration. Orientation is a technique by which the PNA automatically
determines which ports of the module are connected to which ports of the
PNA. Orientation begins to fail at very low power levels or if there is much
attenuation in the path between the PNA and the ECal module.

 VB Syntax cal.OrientECALModule = value

Variable (Type) - Description
cal A Calibrator (object)
value (boolean)

False (0) – DoECAL1Port and DoECAL2Port methods will use the value
of the ECALPortMap property to determine the port connections.
True (1) - DoECAL1Port and DoECAL2Port methods will use Orientation
technique to determine port connections.

Return Type Boolean
Default True (1)

Examples Dim cal As Calibrator

Dim bOrient As Boolean
Set cal = PNAapp.ActiveChannel.Calibrator
cal.OrientECALModule = False 'Write
bOrient = cal.OrientECALModule 'Read

C++ Syntax HRESULT put_OrientECALModule(VARIANT_BOOL bOrient);

HRESULT get_OrientECALModule(VARIANT_BOOL *bOrient);
Interface ICalibrator3

Read / Write About Performing a Calibration

Simultaneous2PortAcquisition Property

Description Specifies whether a 2-port calibration will be done with a single set of
standards (one port at a time) or with two sets of standards
(simultaneously).

 VB Syntax cal.Simultaneous2PortAcquisition = state

Variable (Type) - Description
cal A Calibrator (object)
state (boolean) - Choose from:

72

True - measures 2 ports simultaneously
 False - measures 1 port at a time

Return Type Boolean
Default False

Examples cal.Simultaneous2PortAcquisition = True

C++ Syntax HRESULT put_Simultaneous2PortAcquisition(VARIANT_BOOL

bTwoSetsOfStandards)
HRESULT Simultaneous2PortAcquisition(VARIANT_BOOL
*bTwoSetsOfStandards)

Interface ICalibrator

ICalibrator2_Interface

ICalibrator2 Interface

Description
The ICalibrator2 interface is supported by the Calibrator object. ICalibrator2 is derived from the
Calibrator object’s default interface -- ICalibrator. Therefore, ICalibrator2 supports all of the
same methods and properties as ICalibrator.
ICalibrator2 also provides the additional methods and properties shown below.

Methods Description
None
Properties Description
ECALCharacterization Specifies which set of characterization data within an ECal module will be

used for ECal operations with that module.

Write/Read

ECALCharacterization Property

Description Specifies which set of characterization data within an ECal module will be

used for ECal operations with that module.
A user characterization is entered into a module using the ECal User
Characterization feature on the PNA. . If this COM property is set to one
of the values naECALUserCharacterization1 through
naECALUserCharacterization5 for a particular module, and that module
does not have a characterization corresponding to that user number,
attempts to use that module will return an error until the property is set
back to naECALFactoryCharacterization.

 VB Syntax cal.ECALCharacterization(module) = value

Variable (Type) - Description
cal A Calibrator (object)
module (enum NAECALModule) – ECal module. Choose from:

0 - naECALModule_A

73

1 - naECALModule_B
value (enum NAECALCharacterization) – Characterization data within the

ECal module to be used for ECal operations. Choose from:
0 – naECALFactoryCharacterization
1 – naECALUserCharacterization1
2 – naECALUserCharacterization2
3 – naECALUserCharacterization3
4 – naECALUserCharacterization4
5 – naECALUserCharacterization5

Return Type enum NAECALCharacterization
Default naECALFactoryCharacterization

Examples Dim cal As Calibrator

Dim eCharacterization As NAECALCharacterization
Set cal = PNAapp.ActiveChannel.Calibrator
cal.ECALCharacterization = naECALUserCharacterization1 'Write
eCharacterization = cal.ECALCharacterization 'Read

C++ Syntax HRESULT put_ECALCharacterization(tagNAECALModule

moduleNumber, tagNAECALCharacterization characterization);
HRESULT get_ECALCharacterization(tagNAECALModule
moduleNumber, tagNAECALCharacterization* characterization);

Interface ICalibrator2

ICalibrator3 Interface
ICalibrator3_Interface

Description
This interface extends the Calibrator interface to expose port and orientation properties if ECAL
Learn about reading and writing Calibration data.

Methods Description
None
Properties Description
ECALPortMap Specifies which ports of the ECal module are connected to which

ports of the PNA .
OrientECALModule Specifies if the PNA should perform orientation of the ECal module

during calibration.
CalFactorSegments Collection

CalFactorSegments Collection

Description
A collection object that provides a mechanism for iterating through the segments of a power
sensor cal factor table. For more information about collections, see Collections in the Analyzer.

Methods Description
Add Adds a PowerSensorCalFactorSegment object to the collection
Item Use to get a handle to a PowerSensorCalFactorSegment object

in the collection.
Remove Removes an object from the collection.
Properties Description
Count Returns the number of objects in the collection.

74

Parent Returns a handle to the Parent object (PowerSensor) of this
collection.

Write-only About Source Power Cal

Add (PowerSensorCalFactorSegment) Method

Description Adds a PowerSensorCalFactorSegment to the CalFactorSegments

collection.
To ensure predictable results, it is best to remove all segments before
defining a new list of segments. For each segment in the collection, do a
seg.Remove.

VB Syntax segs.Add (item [size])
Variable (Type) - Description
segs (object) - A CalFactorSegments collection (object)
item (variant) - Number of the new segment. If it already exists, a new

segment is inserted at the requested position.
size (long integer) - Optional argument. The number of segments to add,

starting with item. If unspecified, value is set to 1.
Return Type None
Default Not Applicable

Examples segs.Add 1, 4 ’Adds segments 1,2,3 and 4

C++ Syntax HRESULT Add(VARIANT index, long size);
Interface ICalFactorSegments

Cal Set Object

CalSet Object

Description
Use this interface to query and or change the contents of a Cal Set.
Learn about reading and writing Calibration data.

Methods Description
CloseCalSet Resets the CalType and port associations made in the OpenCal Set.
ComputeErrorTerms Computes error terms for the CalType specified by a preceding OpenCal

Set call.
Copy Creates a new Cal Set and copies the current Cal Set data into it.
getErrorTerm Retrieves variant error term data.
GetErrorTermList Returns a list of error terms for the CalType specified by OpenCal Set
GetGUID Returns the GUID identifying a Cal Set
getStandard Retrieves variant data that was acquired for a specific cal standard.
GetStandardsList Returns a list of standards required for CalType specified by OpenCal Set
HasCalType Verifies that the Cal Set object contains the error terms required to apply

75

the specified CalType to an appropriate measurement.
OpenCalSet Opens the set and restricts access to a set of Error Terms.
putErrorTerm Writes variant error term data into the error-correction buffer.
putStandard Writes variant data that was acquired for a specific cal standard.
Save Saves the current Cal Set to PNACalSets.dat.
StringToNACalClass Converts string values from GetStandardsList into enumeration data
StringToNAErrorTerm2 Converts string values from GetErrorTermList into enumeration data
Properties Description
Description Descriptive string assigned to the Cal Set

Write-only About Cal Sets

Close CalSet Method

Description Closes read/write access to the Cal Set.

See OpenCalSet for an explanation of gaining access to the Cal Set.
When you are finished reading and writing data from or to the Cal Set,
close the Cal Set. Subsequent read/writes will require a new OpenCal
Set call.
Reading and writing Cal Set data is performed with the PutStandard,
GetStandard, PutErrorTerm, GetErrorTerm method calls. These methods
are provided by the ICal Set and ICalData2 interfaces.

VB Syntax CalSet.CloseCalSet
Variable (Type) - Description
CalSet (object) - A Cal Set object
Return Type Not Applicable
Default Not Applicable

Examples Cal Set.CloseCalSet

C++ Syntax HRESULT CloseCalSet
Interface ICalSet

Write-only About Cal Sets

ComputeErrorTerms Method

Description Computes error terms for the caltype specified by a preceding OpenCal

Set call.
 The Cal Set must first be opened using OpenCalSet. If this call has not
been made, the following error is issued:
E_NA_Cal Set_ACCESS_DENIED
The standards data required for the CalType must be available in the Cal
Set or this error will be returned: E_NA_STANDARD_NOT_FOUND.
Note: Error term computation requires data for the actual calibration kit
standards from the current kit definition. ComputeErrorTerms assumes
that the standards were acquired using only one standard per class.

VB Syntax CalSet.ComputeErrorTerms

76

Variable (Type) - Description
CalSet (object) - A Cal Set object
Return Type Not Applicable
Default Not Applicable

Examples CalSet.ComputeErrorTerms

C++ Syntax HRESULT ComputeErrorTerms()
Interface ICalSet

Write-only About Cal Sets

Copy Method

Description Creates a new Cal Set and copies the current Cal Set data into it.

Therefore, you now have a clone Cal Set with a different ID. Use this
command to manipulate data on a Cal Set without corrupting the original
cal data.

VB Syntax CalSet.Copy
Variable (Type) - Description
CalSet (object) - A Cal Set object
Return Type Not Applicable
Default Not Applicable

Examples Dim mgr As CalManager

 Dim ocalset As CalSet
 Dim newcalset As CalSet
 Set mgr = pna.GetCalManager
 ’Create a new (empty) Cal Set.
 Set ocalset = mgr.CreateCalSet(1)
 ocalset.Description = "original calset"
 pna.Channel(1).SelectCalSet ocalset.GetGUID, True

 ’Launch the cal wizard and allow the user to perform
the calibration.
 If pna.LaunchCalWizard(False) Then
 ’If the Launch returns true then the calibration
finished.
 ocalset.Save

 ’Copy the Cal Set to the new one.
 Set newcalset = ocalset.Copy
 newcalset.Description = "copy of original calset"

 Else
 ’If the cal doesn’t finish, delete the old Cal Set
 ’so it isn’t taking up unnecessary memory.
 mgr.DeleteCalSet ocalset.GetGUID
 End If

As a result, the programmer can manipulate the data in the new Cal Set
and always revert back to the old Cal Set as needed.

C++ Syntax HRESULT Copy(ICalSet** pCalSet);
Interface ICalSet

77

Read-only About Cal Sets

GetErrorTerm Method

Description Queries data from the Cal Set that was acquired for a specific standard.

Learn more about reading and writing Cal Data using COM.
Before calling this method you must open the Cal Set with OpenCalSet..
If the Cal Set is not open, this method returns E_NA_Cal
Set_ACCESS_DENIED.
The data is complex pairs. The server returns a variant containing a two-
dimensional safe array. Memory for the returned Variant is allocated by
the server and must be released by client.
Note: See also getErrorTermComplex on the ICalData2 interface to avoid
using the variant data type.

 VB Syntax data = CalSet.getErrorTerm setID, term, rcv, src

Variable (Type) - Description
data Variant array to store the data.
CalSet A Cal Set (object)
setID (long integer) – specifies which error term set to read data from. (0 is the

master set of eterms.)
To get data from interpolated error terms, you must first determine if an
interpolated set exists by calling the GetCalSetUsageInfo method. If it
returns a number greater than 0 for the error term set ID, then the
channel is currently using interpolated arrays. In this case, you can read
from either the interpolated array (setID > 0) or the master array (setID =
0).
Note::Interpolated error terms are destroyed when no longer being used.

term (enum As NaErrorTerm2). Choose from:
0 - naET_Directivity (rcv = src)
1 - naET_SourceMatch (rcv = src)
2 - naET_ReflectionTracking (rcv = src)
3 - naET_TransmissionTracking (rcv != src)
4 - naET_LoadMatch (rcv != src)
5 - naET_Isolation (rcv != src)

rcv (long integer) - Receiver Port
src (long integer) - Source Port

Return Type Variant
Default Not Applicable

Examples Dim varError As Variant

 varError = CalSet.getErrorTerm(0,naET_TransmissionTracking,2,1)

C++ Syntax HRESULT getErrorTerm(long setID, tagNAErrorTerm2 ETerm, long

ReceivePort, long SourcePort, VARIANT* pData)
Interface ICalSet

Write-only About Cal Sets

GetErrorTermList Method

Description Returns the list of Error Terms contained in this Cal Set for the CalType

78

specified in the OpenCal Set method. Learn more about reading and
writing Cal Data using COM.
The list is a comma separated, textual representation of the error terms
with the term name followed by the port path in parentheses:

Term (n, n),
Term (m,n)

Before calling this method you must open the Cal Set with OpenCal Set..
If the Cal set is not open, this method returns E_NA_Cal
Set_ACCESS_DENIED.
Use StringToNAErrorTerm2 to convert the list entrees to values that can
be used with GetErrorTerm and PutErrorTerm.
Note: The port path designation (m n) indicates the ports that contribute
to the error being compensated. Directivity, source match and reflection
tracking are single port characteristics, designated in this list by (n n)
where n equals the port being characterized.
 Other terms characterize the interaction between ports. For example, the
load match term is describing the match at port (m) while looking into port
(n). Thus the notation (m n) indicates the two ports that contribute to the
loadmatch error.

VB Syntax CalSet.GetErrorTermList (SetID, count, strList)
Variable (Type) - Description
CalSet (object) - A Cal Set object
SetID (long) - specifies the error term set to query. Use 0 for the master set.
count (long) - the number of error terms in the returned list
strList (string) - comma separated list of error terms found in Cal Set
Return Type Not Applicable
Default Not Applicable

Examples dim count as Integer

 dim list as string
 OpenCalSet (naCalType_TwoPortSOLT 1, 2)
 GetErrorTermList(0, count, list)
 CloseCalSet()

Assuming the cal set contained the full set of error terms for this two-port
Cal, the returned list would be:
"Directivity(1 1),SourceMatch(1 1),ReflectionTracking(1
1),TransmissionTracking(2 1),LoadMatch(2 1),Isolation(2 1),Directivity(2
2),SourceMatch(2 2),ReflectionTracking(2 2),TransmissionTracking(1
2),LoadMatch(1 2),Isolation(1 2)"

C++ Syntax HRESULT GetErrorTermList (long etermSetID, long* count, BSTR*

strList);
Interface ICalSet

 Read-only About Cal Sets

GetGuid Method

Description Returns a string containing the GUID identifying this Cal Set. Each Cal

Set is assigned a GUID (global unique ID). GUIDs are used to retrieve
and select Cal Sets on the PNA. Learn more about reading and writing
Cal Data using COM.

79

VB Syntax value = CalSet.GetGuid
Variable (Type) - Description
value (string) - Variable to store the returned GUID
CalSet (object) - A Cal Set object
Return Type String
Default Not Applicable

Examples guid = CalSet.GetGuid ’Read

C++ Syntax HRESULT GetGUID(BSTR* pGUIDString);
Interface ICalSet

Read-only About Cal Sets

GetStandard Method

Description Queries data from the Cal Set that was acquired for a specific standard.
Learn more about reading and writing Cal Data using COM.
Before calling this method you must open the Cal Set with OpenCal Set..
If the Cal Set is not open, this method returns E_NA_Cal
Set_ACCESS_DENIED.
The data is complex pairs. The server returns a variant containing a two-
dimensional safe array. Memory for the returned Variant is allocated by
the server and must be released by client.
Note: See also getStandardComplex on the ICalData2 interface to avoid
using the variant data type.

 VB Syntax data = CalSet.getStandard standard, rcv , src

Variable (Type) - Description
data Variant array to store the data.
CalSet A Cal Set (object)
standard (enum NACalClass) Standard to be measured. Choose from:

1 - naClassA

2 - naClassB

3 - naClassC

4 - naClassD

5 - naClassE

6 - naReferenceRatioLine

7 - naReferenceRatioThru

SOLT Standards

1 - naSOLT_Open

2 - naSOLT_Short

3 - naSOLT_Load

4 - naSOLT_Thru

80

5 - naSOLT_Isolation

TRL Standards

1 - naTRL_Reflection

2 - naTRL_Line_Reflection

3 - naTRL_Line_Tracking

4 - naTRL_Thru

5 - naTRL_Isolation

rcv (long integer) - Receiver Port
src (long integer) - Source Port
Return Type (variant) - two-dimensional array (0:1, 0:NumberOfPoints-1)
Default Not Applicable

Examples Dim varStd As Variant

Dim varStd2 As Variant

Cal Set.OpenCalSet(naCalType_TwoPortSOLT, 1, 2)
 varStd = CalSet.getStandard(naSOLT_Thru,2,1)

varStd2 = Cal Set.getStandard(naSOLT_Thru,1,2)

Cal Set.CloseCalSet()

C++ Syntax HRESULT getStandard(tagNACalClass stdclass, long ReceivePort, long

SourcePort, VARIANT* pData)
Interface ICalSet

Read-only About Cal Sets

GetStandardsList Method

Description Returns the list of Standards contained in this Cal Set for the CalType

specified in the OpenCal Set method. Learn more about reading and
writing Cal Data using COM.
The list is a comma separated, textual representation of the error terms
with the term name followed by the port path in parentheses.

Standard (n, n),
Standard (m, n)

Before calling this method you must open the Cal Set with OpenCal Set.
If the Cal Set is not open, this method returns E_NA_Cal
Set_ACCESS_DENIED.
Use StringToNACalClass to convert the list entrees to values that can be
used with GetStandard and PutStandard.
Note: The port path designation (m n) indicates the receive and source
ports for the measurement. Shorts, opens and loads are single port
devices, designated in this list by (n n) where n equals the port to which
the device is connected. These devices are all characterized by reflection

81

measurements.
 The dual port thru device is characterized by both transmission and
reflection measurements in order to compensate for load match and
tracking terms.
 The notation (n n) indicates the reflection measurement for this device.
 The notation (m n) indicates the transmission measurement, where the
source and receive ports are different.

VB Syntax CalSet.GetStandardsList (count, list)
Variable (Type) - Description
CalSet (object) - A Cal Set object
count (long [out]) - indicates the number of items returned in the list
list (string) - Variable to store the returned Comma separated list of items.
Return Type String
Default Not Applicable

Examples dim count as Integer

 dim list as string
 OpenCalSet (naCalType_TwoPortSOLT, 1, 2)
 GetStandardsList(count, list)
 CloseCalSet()

Assuming the Cal Set contained the full set of standards for this two port
cal, the returned list would be:
"Open(1 1),
Short(1 1),
Load(1 1),
Thru(1 1),
Isolation(2 1),
Open(2 2),
Short(2 2),
Load(2 2),
Thru(2 2),
Isolation(1 2)
Thru(2 1),
Thru(1 2)"

C++ Syntax HRESULT GetStandardsList(long* count, BSTR* list);
Interface ICalSet

Read-only About Cal Sets

HasCalType Method

Descri
ption

Verifies that the Cal Set object contains the error terms required to perform the specified
correction (CalType) to an appropriate measurement.
The argument list includes specifiers for up to 3 ports. The number of arguments required
depends on the CalType specified. The value for each port is set to 0 if not specified.
* order of port arguments is significant for these caltypes

Caltype Port arguments required
naCalType_Response_Open Port1
naCalType_Response_Short Port1

82

*naCalType_Response_Thru Port1 (rcv), Port2 (src)
*naCalType_Response_Thru_And_Isol Port1 (rcv), Port2 (src)
naCalType_OnePort Port1
naCalType_TwoPort_SOLT Port1, Port2
naCalType_TwoPort_TRL Port1, Port2
naCalType_ThreePort_SOLT Port1, Port2, Port3

VB Syntax check = CalSet.HasCalType calType, port1, port2, port3
Variable (Type) - Description
check (boolean) - variable to store the returned value

TRUE (nonzero) - Cal Set has all of the error terms necessary to apply
the specified correction (CalType)
FALSE(0) - Cal Set DOES NOT have all of the error terms necessary to
apply the specified CalType

CalSet (object) - A Cal Set object
calType (enum as naCalType) - type of correction to be applied. Choose from

0 - naCalType_Response_Open
 1 - naCalType_Response_Short
 2 - naCalType_Response_Thru
 3 - naCalType_Response_Thru_And_Isol
 4 - naCalType_OnePort
 5 - naCalType_TwoPort_SOLT
 6 - naCalType_TwoPort_TRL
 7 - naCalType_None
 8 - naCalType_ThreePort_SOLT

port1 (long) - required. This argument must be specified.
This specifies either:
- the one significant port for an open/short response cal or a 1 port cal.
- or one of the ports involved in a 2 or 3 port cal
- or the receive port for a thru response / thru-isolation cal.

port2 (long) - required for any caltype involving more than one port
This specifies either:
- one of the ports involved in a 2 or 3 port cal (order independent)
- or the source port for a thru response / thru-isolation cal

port3 (long) - required only for 3 port cal
This specifies either:
- one of the ports involved in a 3 port cal (order independent)

Return Type VARIANT_BOOL
Default Not Applicable

Examples value = CalSet.HasCalType(naCalType_TwoPort_TRL, 1, 2)

C++ Syntax HRESULT HasCalType(tagNACalType, long port1, long port2, long

port3, BOOL *pVal);
Interface ICalSet

Read-only About Cal Sets

83

OpenCalSet Method

Descri
ption

Open the Cal Set to read/write a particular CalType. Learn more about reading and writing
Cal Data using COM.
This method is a prerequisite to several other Cal Set methods.
A Cal Set can contain more than one caltype. This method opens the Cal Set and restrict
access to a particular set of terms. Subsequent commands like PutErrorTerm and
GetErrorTerm use this information to access the correct error terms in the Cal Set. For
example:
OpenCal Set(naCalType_TwoPortSOLT, 3, 2, 0)

PutErrorTerm(naDirectivity, 1, 1, Buffer)

The directivity error term for port 1 could belong to any number of caltypes: Full1Port
(S11), Full2Port (12), Full2Port (13) or Full3Port (123). The CalType and port specifiers in
the OpenCalSet call direct the uploaded directivity term to the correct set of error terms.
To close the CalType, see CloseCalSet.
The argument list includes three port specifiers. The following table shows which of these
arguments are significant, given the CalType specified.

Caltype Port arguments required
naCalType_Response_Open Port1
naCalType_Response_Short Port1
*naCalType_Response_Thru Port1 (rcv), Port2(src)
*naCalType_Response_Thru_And_Isol Port1 (rcv), Port2(src)
naCalType_OnePort Port1
naCalType_TwoPort_SOLT Port1, Port2
naCalType_TwoPort_TRL Port1, Port2
naCalType_ThreePort_SOLT Port1, Port2, Port3

* order of port arguments is significant for these caltypes

VB Syntax CalSet.OpenCalSet (CalType, port1, port2, port3)
Variable (Type) - Description
CalSet (object) - A Cal Set object
CalType (enum as naCalType) - type of correction to be applied. Choose from

0 - naCalType_Response_Open
 1 - naCalType_Response_Short
 2 - naCalType_Response_Thru
 3 - naCalType_Response_Thru_And_Isol
 4 - naCalType_OnePort
 5 - naCalType_TwoPort_SOLT
 6 - naCalType_TwoPort_TRL
7 - naCalType_None
 8 - naCalType_ThreePort_SOLT

port1 (long) - required. This argument must be specified.
This specifies either:
- the one significant port for an open/short response cal or a 1 port cal.
- or one of the ports involved in a 2 or 3 port cal
- or the receive port for a thru response / thru-isolation cal.

port2 (long) - required for any caltype involving more than one port
This specifies either:
- one of the ports involved in a 2 or 3 port cal (order independent)
- or the source port for a thru response / thru-isolation cal

port3 (long) - required only for 3 port cal

84

This specifies either:
- one of the ports involved in a 3 port cal (order independent)

Return Type None
Default Not Applicable

Examples CalSet.OpenCalSet naCalType_ThreePort_SOLT, 3,2,1

C++ Syntax HRESULT OpenCalSet (naCalType, port1, [optional] port2, [optional]

port3);
Interface ICalSet

Write-only About Cal Sets

PutErrorTerm Method

Description Puts error term data into the Cal Set. Learn more about reading and

writing Cal data using COM
Before calling this method you must open the Cal Set with OpenCal Set..
If the Cal Set is not open, this method returns E_NA_Cal
Set_ACCESS_DENIED.
The data must be complex pairs, contained in a two-dimensional
VARIANT array.
Note: See also PutErrorTermComplex on the ICalData2 interface to
avoid using the variant data type.

 VB Syntax CalSet.putErrorTerm (term, rcv, src, data)

Variable (Type) - Description
CalSet (object) - A Cal Set object
term (enum As NaErrorTerm2) Error Term. Choose from:

0 - naET_Directivity (src = rcv)
1 - naET_SourceMatch (src = rcv)
2 - naET_ReflectionTracking (src = rcv)
3 - naET_TransmissionTracking (src != rcv)
4 - naET_LoadMatch (src != rcv)
5 - naET_Isolation (src != rcv)

rcv (long integer) - Receiver Port
src (long integer) - Source Port
data (variant) Error term data in a two-dimensional array (0:1, 0:numpts-1).

Return Type Not Applicable
Default Not Applicable

Examples Private Sub Form_Load()

 Set pna=CreateObject("AgilentPNA835x.Application")
 InitPhonyData
 PutPhonyData
 End Sub

 Private Sub InitPhonyData()
 Dim i
 Dim numpts
 numpts = ActiveChannel.NumberOfPoints
 ReDim v(numpts - 1, 1)

85

 For i = 0 To numpts - 1
 v(i, 0) = i
 v(i, 1) = 0
 Next

 End Sub

 Private Sub PutPhonyData()
 Dim cset As CalSet
 Set cmgr = pna.GetCalManager
 Set cset = cmgr.CreateCalSet(1)
 cset.OpenCalSet naCalType_OnePort, 1
 cset.putErrorTerm naET_Directivity, 1, 1, v
 cset.putErrorTerm naET_ReflectionTracking, 1, 1, v
 cset.putErrorTerm naET_SourceMatch, 1, 1, v
 cset.CloseCalSet
 cset.Description = "Phony One Port"
 guid = cset.GetGUID

 End Sub

C++ Syntax HRESULT putErrorTerm(tagNAErrorTerm2 ETerm, long ReceivePort,

long SourcePort, VARIANT varData)
Interface ICalSet

Write-only About Cal Sets

PutStandard Method

Description Puts data into the CalSet. Learn more

about reading and writing Cal data using
COM
Before calling this method you must open
the Cal Set with OpenCal Set. If the Cal
Set is not open, this method returns
E_NA_Cal Set_ACCESS_DENIED.
The data is complex pairs. The server
returns a variant containing a two-
dimensional safe array. Memory for the
returned Variant is allocated by the server
and must be released by client.
Note: See also PutStandardComplex on
the ICalData2 interface to avoid using the
variant data type.

 VB Syntax obj.putStandard class, rcv, src, data

Variable (Type) - Description
obj (object) - A Calibrator or Cal Set object
class (enum NACalClass) Standard. Choose

from:

86

1 - naClassA

2 - naClassB

3 - naClassC

4 - naClassD

5 - naClassE

6 - naReferenceRatioLine

7 - naReferenceRatioThru

SOLT Standards

1 - naSOLT_Open

2 - naSOLT_Short

3 - naSOLT_Load

4 - naSOLT_Thru

5 - naSOLT_Isolation

TRL Standards

1 - naTRL_Reflection

2 - naTRL_Line_Reflection

3 - naTRL_Line_Tracking

4 - naTRL_Thru

5 - naTRL_Isolation

rcv (long) - Receiver Port
src (long) - Source Port
data (variant) Two dimensional array (

NUMPTS, 2)
Return Type Not Applicable
Default Not Applicable

Examples Dim cmgr as CalManager

87

 Dim cset As CalSet
 Set cmgr = pna.GetCalManager
 Set cset = cmgr.CreateCalSet(1)
 cset.OpenCalSet naCalType_OnePort, 1
 cset.putStandard naSOLT_Open, 1, 1,
varOpen
 cset.putStandard naSOLT_Short, 1, 1,
varShort
 cset.putStandard naSOLT_Load, 1, 1,
varLoad
 cset.ComputeErrorTerms
 cset.CloseCalSet
 cset.Description = "Uploaded one
port cal"
 guid = cset.GetGUID

 End Sub

C++ Syntax HRESULT putStandard(tagNACalClass

stdclass, long ReceivePort, long
SourcePort, VARIANT varData)

Interface ICalibrator
 ICalSet

Write-only About Cal Sets

Save Method

Description Saves the current Cal Set to the PNACalSets.dat file. Learn more about

reading and writing Cal data using COM
Note: There is also a Save method on the ICalManager and Calibrator
interface. The difference is the following:
 ICalSet::Save - saves the data for the current Cal Set to the disk.
 ICalManager/Calibrator::SaveCalSets - saves every Cal Set that
currently exists in the instrument to the disk.

VB Syntax CalSet.Save
Variable (Type) - Description
CalSet (object) - A Cal Set object
Return Type Not Applicable
Default Not Applicable

Examples myCalSet.Save

See Copy Method for an example application of this command.

C++ Syntax HRESULT Save();
Interface ICalSet

 Read-only About Cal Sets

88

StringToNACalClass Method

Description Converts the returned strings from GetStandardsList into the enumeration

(NACalClass) and the port numbers required for PutStandard and
GetStandard methods that transmit data in and out of the Cal Set.
Learn more about reading and writing Cal data using COM

VB Syntax CalSet.StringToNACalClass (list, std, rcv, src)
Variable (Type) - Description
CalSet (object) - A Cal Set object
list (string) - a string containing the textual description of the standard.
std (enum NACalClass) Choose from:

1 - naClassA

2 - naClassB

3 - naClassC

4 - naClassD

5 - naClassE

6 - naReferenceRatioLine

7 - naReferenceRatioThru

SOLT Standards

1 - naSOLT_Open

2 - naSOLT_Short

3 - naSOLT_Load

4 - naSOLT_Thru

5 - naSOLT_Isolation

TRL Standards

1 - naTRL_Reflection

2 - naTRL_Line_Reflection

3 - naTRL_Line_Tracking

4 - naTRL_Thru

5 - naTRL_Isolation

rcv (long) - port number of the receiver
src (long) - port number of the source
Return Type Not Applicable
Default Not Applicable

89

Examples guid = CalSet.StringToNACalClass(list, std, rcv, src)

C++ Syntax HRESULT StringtoNACalClass (BSTR* str, NACalClass* item, long *rcv,

long *src);
Interface ICalSet

 Read-only About Cal Sets

StringtoNAErrorTerm2 Method

Description Converts the returned strings from GetErrorTermList into the enumeration

(NAErrorTerm2) and the port numbers required for PutErrorTerm and
GetErrorTerm methods that transmit data in and out of the Cal Set.
Learn more about reading and writing Cal data using COM

VB Syntax Cal Set.StringToNAErrorTerm2 (list, eterm, rcv, src)
Variable (Type) - Description
Cal Set (object) - A Cal Set object
list (string) - a string containing the textual description of the error term.
eterm (enum As NaErrorTerm2). Choose from:

0 - naET_Directivity (rcv = src)
 1 - naET_SourceMatch (rcv = src)
 2 - naET_ReflectionTracking (rcv = src)
 3 - naET_TransmissionTracking (rcv != src)
 4 - naET_LoadMatch (rcv != src)
 5 - naET_Isolation (rcv != src)

rcv (long) - port number of the receiver
src (long) - port number of the source
Return Type Not Applicable
Default Not Applicable

Examples CalSet.StringToNAErrorTerm2 str, term, rcv, src

C++ Syntax HRESULT StringToNAErrorTerm2 (BSTR* str, NAErrorTerm2* item, long

*rcv, long *src);
Interface ICalSet

Write / Read About Cal Sets

Description Property

Description Sets or returns the descriptive string assigned to the Cal Set. Change this
string so that you can easily identify each Cal Set constructed.

VB Syntax CalSet.Description = value
Variable (Type) - Description
CalSet (object) - A Cal Set object
value (string) – Description of the Cal Set
Return Type String
Default “CalSet_n” where n is an integer number.

90

Examples CalSet.Description = "My Cal Set" ’Write
 desc = CalSet.Description ’Read

C++ Syntax HRESULT get_Description(BSTR *pVal)

HRESULT put_Description(BSTR newVal);
Interface ICalSet

ICalSet2 Interface
ICalSet2_Interface

Description
Use this interface as an alternative to the CalSet Interface when transmitting data to and from
the Cal Set to avoid using variants.
Learn about reading and writing Calibration data.

Methods Description
GetErrorTermByString Queries the calset for a specific error term
PutErrorTermByString Writes data for a specific error term to the calset.
GetStandardByString Queries the calset for the data for a specific standard.
PutStandardByString Writes data for a specific standard to the calset.
GetErrorTermList2 Queries the calset for a specific error term
GetStandardList2 Queries for a list of standards contained by this calset for the

specified caltype.

Properties Description
None

Cal Sets Collection

Cal Sets Collection

Description
A collection object that provides a mechanism for iterating through all the Cal Sets in the
analyzer. There is no ordering to the items in the collection. Therefore make no assumptions
about the formatting of the collection. For more information, see Collections in the Analyzer.

Methods Description
Item Returns a handle to a Cal Set object in the collection.
Remove Deletes the Cal Set residing at position index in the collection.
Properties Description
Count Returns the number of Cal Sets in the collection.

CalKit Object

CalKit Object

Description
The calkit object provides the properties and methods to access and modify a calibration kit. The
calkitType property can be set from either the application object (app.calKitType) or the calKit

91

object (calKit.calKitType). Both of these commands specify or read the calibration kit type. When
specified, the cal kit also becomes the Active cal kit. However, to retrieve a pointer to the cal kit,
use app.ActiveCalKit.
The calKit object behaves somewhat differently from other objects in the system in that you can
only have a pointer to one cal kit (which is also the active calkit).
Therefore, when you change the calkitType (from either of these objects) you may also be
changing the object to which you may have several references. This is different from the behavior
for most other objects in the system.
For example, the following code specifies two calKit type objects and in turn, assigns them to two
different variables: ck1 and ck2.
Dim app As AgilentPNA835x.Application
 Dim ck1 As calKit
 Dim ck2 As calKit

 Private Sub Form_Load()
 Set app = CreateObject("AgilentPNA835x.Application", "analyzerName")
 app.CalKitType = naCalKit_User1
 Set ck1 = app.ActiveCalKit

 app.CalKitType = naCalKit_User2
 Set ck2 = app.ActiveCalKit

 Print "ck1: " & ck1.Name
 Print "ck2: " & ck2.Name
 End Sub

When the pointer to each of these kits is read (printed), they each have a pointer to the last kit to
be assigned to the Active cal kit:
ck1: User Defined #1
 ck2: User Defined #2

Method Description
getCalStandard Returns a handle to a calibration standard for modifying its definitions.
GetStandardsForClass Returns the calibration standard numbers for a specified calibration

class.
SetStandardsForClass Sets the calibration standard numbers for a specified calibration class
Property Description
CalKitType Sets or returns the calibration kit type for to be used for calibration or

for kit modification.
Shared with the Application object.

Name Sets and returns the name of the cal kit
PortLabel Labels the ports for the kit; only affects the cal wizard annotation.
StandardForClass Obsolete Maps a standard device to a cal class.

Write-only About Modifying Cal Kits

GetCalStandard Method

Description Returns a handle to a calibration standard for modifying its definitions. To
select a standard for performing a calibration (use
Calibrator.AquireCalStandard).

 VB Syntax calkit.GetCalStandard(index)

92

Variable (Type) - Description
calkit A calKit (object)
index (long) - Number of calibration standard. Choose 1 to 30; (there are 30 cal

standards in every kit).
Return Type calStandard
Default Not Applicable

Examples Dim short As CalStandard

 Set short = calKit.getCalStandard(1)
 short.label = "myShort"

C++ Syntax HRESULT GetCalStandard(long standardNumber, ICalStandard

**pCalStd)
Interface ICalKit

Write/Read About Modifying Cal Kits

Name (CalKit) Property

Description Sets and Returns a name for the selected calibration kit.
 VB Syntax calKit.Name = value

Variable (Type) - Description
calKit A CalKit (object).
value (string) -Calibration Kit name. Any string name, can include numerics,

period, and spaces; any length (although the dialog box display is limited
to about 30 characters).

Return Type String
Default Not Applicable

calKit.Name = "MyCalKit" ’WriteExamples
KitName = calKit.Name ’Read

C++ Syntax HRESULT get_Name(BSTR *pVal)

 HRESULT put_Name(BSTR newVal)
Interface ICalKit

Write/Read About Modifying Cal Kits

PortLabel Property

Description Sets and returns the label on the calibration kit Port for the calibration
wizard.

 VB Syntax calKit.Portlabel (portNum) = value

Variable (Type) - Description
calKit A CalKit (object)
portNum (long integer) - number of the port to be labeled. Choose either 1 or 2
value (string) - Label that is visible in the calibration wizard.
Return Type String
Default Depends on the Cal Kit.

Examples calKit.PortLabel = "MyCalKit" ’Write

93

kitLabel = calKit.PortLabel ’Read

C++ Syntax HRESULT get_PortLabel(long port, BSTR *pVal)

 HRESULT put_PortLabel(long port, BSTR newVal)
Interface ICalKit

Write/Read About Modifying Cal Kits

StandardForClass Property

Description Sets a standard to a calibration class. Does NOT set or dictate the order for
measuring the standards.

 VB Syntax calKit.StandardForClass(class, portNum) = value

Variable (Type) - Description
calKit A CalKit (object). Use calKit.GetCalStandard to get a handle to the standard.
class (enum NACalClass) Standard. Choose from:

1 - naClassA

2 - naClassB

3 - naClassC

4 - naClassD

5 - naClassE

6 - naReferenceRatioLine

7 - naReferenceRatioThru

SOLT Standards

1 - naSOLT_Open

2 - naSOLT_Short

3 - naSOLT_Load

4 - naSOLT_Thru

5 - naSOLT_Isolation

TRL Standards

1 - naTRL_Reflection

2 - naTRL_Line_Reflection

3 - naTRL_Line_Tracking

4 - naTRL_Thru

94

5 - naTRL_Isolation

portNum (long) - The port number the standard will be connected to. For example, you
may have a 3.5mm connector designated for port 1, and Type N designated
for port 2.

value (double) - Calibration class number. Choose a number between 1 and 8. The
<value> numbers are associated with the following calibration classes:
<valu
e>

Class Description

1 S11A Reflection standard
2 S11B Reflection standard
3 S11C Reflection standard
4 S21T Thru standard
5 S22A Reflection standard
6 S22B Reflection standard
7 S22C Reflection standard
8 S21T Thru standard

Return Type
Default

Examples

C++ Syntax
Interface

CalManager Object

CalManager Object

Description
Use this interface to list, save, and delete Cal Sets.

Methods Description
CreateCalSet Creates a new Cal Set
DeleteCalSet Deletes a Cal Set
GetCalSetByGUID Get a handle to a Cal Set
GetCalSetCatalog Gets a list of Cal Sets
GetCalSetUsageInfo Returns the Cal Set ID and Error Term ID

currently in use
SaveCalSets Writes new or changed Cal Sets to disk

Shared with the Calibrator Object
Properties
CalSets (collection)

95

Write-only About Cal Sets

CreateCalSet Method

Description Creates a new Cal Set.

The new cal set is initialized with the stimulus settings from the channel
whose number is passed as the argument to this method. Stimulus
settings include frequency, bandwidth, number of points, etc.
Use this method when you want to manually upload data to the Cal Set
using the returned ICal Set interface handle..
Note: The channel number does not restrict the usage of this Cal Set on
any other channel. It simply provides a link to the originating channel so
that the stimulus values can be stored in the Cal Set.

 VB Syntax calMgr.CreateCalSet (chan)

Variable (Type) - Description
calMgr (object) - A CalManager object
chan (long) - channel number of the new Cal Set.
Return Type ICal Set Interface
Default Not Applicable

Example calMgr.CreateCalSet 1

C++ Syntax HRESULT CreateCalSet(long ChannelNumber, ICal Set** pCal Set);
Interface ICalManager

Write-only About Cal Sets

DeleteCalSet Method

Description Deletes a Cal Set from the set of available Cal Sets. This method

immediately updates the Cal Set file on the hard drive. If the Cal Set is
currently being used by a channel, this request will be denied and an
error is returned.
Errors returned by this method:

E_NA_CAL_SET_IN_USE
E_NA_Cal Set_NOT_FOUND
E_NA_Cal Set_SAVE_FAILED

Using the Cal Sets collection is a convenient way to manage Cal Sets.
 VB Syntax calMgr.DeleteCalSet (GUID)

Variable (Type) - Description
calMgr (object) - A CalManager object
GUID (string) - GUID number of the Cal Set to be deleted
Return Type Not Applicable
Default Not Applicable

Example dim cs As CalSet ’ the collection

dim strGUID as string

strGUID = cs.GetGUID

calMgr.DeleteCalSet strGUID

96

C++ Syntax HRESULT DeleteCalSet(BSTR strGUID);
Interface ICalManager

Read-only About Cal Sets

Get CalSetByGUID Method

Description Requests a Cal Set by GUID. Returns an ICal Set interface.
 VB Syntax calMgr.GetCalSetByGUID (GUID)

Variable (Type) - Description
calMgr (object) - A CalManager object
GUID (string) - GUID of the Cal Set being requested.
Return Type Interface object
Default Not Applicable

Example calMgr.GetCalSetByGUID (2B893E7A-971A-11d5-8D6C-

00108334AE96)

C++ Syntax HRESULT GetCalSetByGUID(BSTR* strGUID, ICal Set* pCalSet);
Interface ICalManager

Read-only About Cal Sets

GetCalSetCatalog Method

Description Returns a string containing a list of comma-separated GUIDs in the

following format:
{FD6F863E-9719-11d5-8D6C-00108334AE96},
{1B03B2CE-971A-11d5-8D6C-00108334AE96},
{2B893E7A-971A-11d5-8D6C-00108334AE96}

 VB Syntax value = calMgr.GetCalSetCatalog

Variable (Type) - Description
value (string) - Variable to store the returned GUID list
calMgr (object) - A CalManager object
Return Type String
Default Not Applicable

Example value = calMgr.GetCalSetCatalog

C++ Syntax HRESULT GetCalSetCatalog(BSTR);
Interface ICalManager

Read-only About Cal Sets

GetCalSetUsageInfo Method

Description Returns a string identifying the Cal Set currently in use by the specified

channel.
This method identifies the Cal Set being used by returning its GUID.

97

This method also identifies the "Error Term set" within the Cal Set.
Error term sets are identified by integers, with set 0 belonging to the
original (non-interpolated) terms. As stimulus values for a channel are
changed causing interpolation to be required, a new Error Term set is
constructed within the Cal Set to hold the interpolated Error Terms. The
sets are sequentially numbered 1, 2, 3, and so forth. These Error Term
sets are destroyed when they are no longer being used.
If there is no Cal Set in use for the given channel, the <GUID> argument
is set to the empty string.

 VB Syntax calMgr.GetCalSetUsageInfo (chan, GUID, EtermID)

Variable (Type) - Description
calMgr (object) - A CalManager object
chan (long [in]) - channel of the Cal Set being requested
GUID (string [out]) - variable to store the GUID of the Cal Set being requested.

If there is no Cal Set in use for the given channel, the <GUID> argument
is set to the empty string.

EtermID (long [out]) - variable to store the error term ID being requested. If the
returned argument is greater than 0, the set is being interpolated.

Return Type String , Long Integer
Default Not Applicable

Example calMgr.GetCalSetUsageInfo (1, GUID, EtermID)

C++ Syntax HRESULT GetCalSetUsageInfo (long lChannel, BSTR* CalSetGUID,

long* etermSetID);
Interface ICalManager

ICalManager2 Interface
ICalManager2_Interface

Description
This interface extends the CalManager interface. Use this interface to create custom calibration
objects and query calibration type information.
Learn about reading and writing Calibration data.

Methods Description
GetRequiredEtermNames Returns an array of strings specifying the error terms required by the

caltype’s correction algorithm in order to correct the specified
parameter.

CreateCustomCal Attempts to create a custom cal object.
Properties Description
None

CalStandard Object
CalStandard Object

Description
Contains all of the settings that are required to modify a calibration kit. Get a handle to a standard
with the calkit.GetCalStandard Method.

Method

98

None
Property Description
C0 Sets and Returns the C0 (C-zero) value (the first capacitance value) for the

calibration standard, when the Type is set to "naOpen".
C1 Sets and Returns the C1 value (the second capacitance value) for the calibration

standard, when the Type is set to "naOpen".
C2 Sets and Returns the C2 value (the third capacitance value) for the calibration

standard, when the Type is set to "naOpen".
C3 Sets and Returns the C3 value (the fourth capacitance value) for the calibration

standard, when the Type is set to "naOpen".
Delay Sets and Returns the electrical delay value for the calibration standard.
L0 Sets and Returns the L0 (L-zero) value (the first inductance value) for the calibration

standard, when the Type is set to "naShort".
L1 Sets and Returns the L1 value (the second inductance value) for the calibration

standard, when the Type is set to "naShort"..
L2 Sets and Returns the L2 value (the third inductance value) for the calibration

standard, when the Type is set to "naShort"..
L3 Sets and Returns the L3 value (the third inductance value) for the calibration

standard, when the Type is set to "naShort"..
Label Sets and Returns the label for the calibration standard.
loss Sets and Returns the insertion loss for the calibration standard.
Maximum
 Frequency

Sets and Returns the maximum frequency for the calibration standard.

Medium Sets and Returns the media type of the calibration standard.
Minimum
 Frequency

Sets and Returns the minumum frequency for the calibration standard.

Type Sets and Returns the type of calibration standard. Selections are: naOpen, naShort,
naLoad, naThru, naArbitraryImpedance and naSliding.

Z0 Sets and Returns the characteristic impedance for the calibration standard.

Write/Read About Modifying Cal Kits

C0 Property

Description Sets and Returns the C0 (C-zero) value (the first capacitance value) for
the calibration standard.
To set the other capacitance values, use C1, C2, C3

 VB Syntax calstd.C0 = value

Variable (Type) - Description
calstd A CalStandard (object). Use calKit.GetCalStandard to get a handle to the

standard.
value (single) - Value for C0 in picofarads
Return Type Single
Default Not Applicable

calstd.C0 = 15 ’Write the value of C0 to 15picofaradsExamples
cap0 = calstd.C0 ’Read the value of C0

C++ Syntax HRESULT get_C0(float *pVal)

 HRESULT put_C0(float newVal)

99

Interface ICalStandard

Write/Read About Modifying Cal Kits

C1 Property

Description Sets and Returns the C1 value (the second capacitance value) for the
calibration standard.
To set the other capacitance values, use C0, C2, C3

 VB Syntax calstd.C1 = value

Variable (Type) - Description
calstd A CalStandard (object). Use calKit.GetCalStandard to get a handle to the

standard.
value (single) - Value for C1 in picofarads
Return Type Single
Default Not Applicable

calstd.C1 = 15 ’Write the value of C1 to 15picofaradsExamples
cap1 = calstd.C1 ’Read the value of C1

C++ Syntax HRESULT get_C1(float *pVal)

 HRESULT put_C1(float newVal)
Interface ICalStandard

Write/Read About Modifying Cal Kits

C2 Property

Description Sets and Returns the C2 value (the third capacitance value) for the
calibration standard.
To set the other capacitance values, use C0, C1, C3

 VB Syntax calstd.C2 = value

Variable (Type) - Description
calstd A CalStandard (object). Use calKit.GetCalStandard to get a handle to the

standard.
value (single) - Value for C2 in picofarads
Return Type Single
Default Not Applicable

calstd.C2 = 15 ’Write the value of C2 to 15picofaradsExamples
cap2 = calstd.C2 ’Read the value of C2

C++ Syntax HRESULT get_C2(float *pVal)

 HRESULT put_C2(float newVal)
Interface ICalStandard

Write/Read About Modifying Cal Kits

100

C3 Property

Description Sets and Returns the C3 value (the fourth capacitance value) for the
calibration standard.
To set the other capacitance values, use C0, C1, C2

 VB Syntax calstd.C3 = value

Variable (Type) - Description
calstd A CalStandard (object). Use calKit.GetCalStandard to get a handle to the

standard.
value (single) - Value for C3 in picofarads
Return Type Single
Default Not Applicable

calstd.C3 = 15 ’Write the value of C3 to 15picofaradsExamples
cap3 = calstd.C3 ’Read the value of C3

C++ Syntax HRESULT get_C3(float *pVal)

 HRESULT put_C3(float newVal)
Interface ICalStandard

Write/Read About Modifying Cal Kits

Delay Property

Description Sets and Returns the electrical delay value for the calibration standard.
 VB Syntax calstd.Delay = value

Variable (Type) - Description
calstd A CalStandard (object). Use calKit.GetCalStandard to get a handle to the

standard.
value (single) - Electrical delay in seconds
Return Type Single
Default Not Applicable

calstd.Delay = .00015 ’Write the Delay .00015 secondsExaamples
stdDelay = calstd.Delay ’Read the value of Delay

C++ Syntax HRESULT get_Delay(float *pVal)

 HRESULT put_Delay(float newVal)
Interface ICalStandard

Write/Read About Modifying Cal Kits

L1 Property

Description Sets and Returns the L1 value (the second inductance value) for the
calibration standard.
To set the other inductance values, use L0, L2, L3

 VB Syntax calstd.L1 = value

101

Variable (Type) - Description
calstd A CalStandard (object). Use calKit.GetCalStandard to get a handle to the

standard.
value (single) - Value for L1 in picohenries
Return Type Single
Default Not Applicable

calstd.L1 = 15 ’Write the value of L1 = 15picohenriesExamples
Induct1 = calstd.L1 ’Read the value of L1

C++ Syntax HRESULT get_L1(float *pVal)

 HRESULT put_L1(float newVal)
Interface ICalStandard

Write/Read About Modifying Cal Kits

L2 Property

Description Sets and Returns the L2 value (the third inductance value) for the
calibration standard.
To set the other inductance values, use L0, L1, L3

 VB Syntax calstd.L2 = value

Variable (Type) - Description
calstd A CalStandard (object). Use calKit.GetCalStandard to get a handle to the

standard.
value (single) - Value for L2 in picohenries
Return Type Single
Default Not Applicable

calstd.L2 = 15 ’Write the value of L2 to 15picohenriesExamples
Induct2 = calstd.L2 ’Read the value of L2

C++ Syntax HRESULT get_L2(float *pVal)

 HRESULT put_L2(float newVal)
Interface ICalStandard

Write/Read About Modifying Cal Kits

L3 Property

Description Sets and Returns the L3 value (the third inductance value) for the
calibration standard.
To set the other inductance values, use L0, L1, L2

 VB Syntax calstd.L3 = value

Variable (Type) - Description
calstd A CalStandard (object). Use calKit.GetCalStandard to get a handle to the

standard.
value (single) - Value for L3 in picohenries
Return Type Single
Default Not Applicable

102

calstd.L3 = 15 ’Write the value of L3 to 15picohenriesExamples
Induct3 = calstd.L3 ’Read the value of L3

C++ Syntax HRESULT get_L3(float *pVal)

 HRESULT put_L3(float newVal)
Interface ICalStandard

Write/Read About Modifying Cal Kits

L0 Property

Description Sets and Returns the L0 (L-zero) value (the first inductance value) for the
calibration standard.
To set the other inductance values, use L1, L2, L3

 VB Syntax calstd.L0 = value

Variable (Type) - Description
calstd A CalStandard (object). Use calKit.GetCalStandard to get a handle to the

standard.
value (single) - Value for L0 in picohenries
Return Type Single
Default Not Applicable

calstd.L0 = 15 ’Write the value of L0 = 15picohenriesExamples
Induct0 = calstd.L0 ’Read the value of L0

C++ Syntax HRESULT get_L0(float *pVal)

 HRESULT put_L0(float newVal)
Interface ICalStandard

Write/Read About Modifying Cal Kits

Label Property

Description Sets and Returns the label for the calibration standard. The label is used
to prompt the user to connect the specified standard.

 VB Syntax calstd.Label = value

Variable (Type) - Description
calstd A CalStandard (object). Use calKit.GetCalStandard to get a handle to the

standard.
value (string) - between 1 and 12 characters long. Cannot begin with a

numeric.
Return Type String
Default Not Applicable

calstd.Label = "Short" ’WriteExamples
stdLabel = calstd.Label ’Read

C++ Syntax HRESULT get_Label(BSTR *pVal)

 HRESULT put_Label(BSTR newVal)

103

Interface ICalStandard

Write/Read About Modifying Cal Kits

Loss Property

Description Sets and Returns the insertion loss for the calibration standard.
 VB Syntax calstd.loss = value

Variable (Type) - Description
calstd A CalStandard (object). Use calKit.GetCalStandard to get a handle to the

standard.
value (single) - Insertion loss in Mohms / sec. (MegaOhms per second of

electrical delay)
Return Type Single
Default Not Applicable

calstd.loss = 3.5e9 ’WriteExamples
stdLoss = calstd.loss ’Read the value of Loss

C++ Syntax HRESULT get_Loss(float *pVal)

 HRESULT put_Loss(float newVal)
Interface ICalStandard

Write/Read About Modifying Cal Kits

MaximumFrequency Property

Description Sets and Returns the maximum frequency for the calibration standard.
 VB Syntax calstd.MaximumFrequency = value

Variable (Type) - Description
calstd A CalStandard (object). Use calKit.GetCalStandard to get a handle to the

standard.
value (double) - Maximum frequency in Hertz.
Return Type Double
Default Not Applicable

calstd.MaximumFrequency = 9e9 ’WriteExamples
maxFrequency = calstd.MaximumFrequency ’Read

C++ Syntax HRESULT get_MaximumFrequency(double *pVal)

 HRESULT put_MaximumFrequency(double newVal)
Interface ICalStandard

Write/Read About Modifying Cal Kits

Medium Property

104

Description Sets and Returns the media type of the calibration standard.
 VB Syntax calstd.Medium = value

Variable (Type) - Description
calstd A CalStandard (object). Use calKit.GetCalStandard to get a handle to the

standard.
value (enum NACalStandardMedium) - Medium of the transmission line of the

standard. Choose from:
 0 - naCoax - Coaxial Cable
 1 - naWaveGuide

Return Type Long Integer
Default Not Applicable

calstd.Medium = naCoax ’WriteExamples
stdMedium = calstd.Medium ’Read

C++ Syntax HRESULT get_Medium(tagNACalStandardMedium *pVal)

 HRESULT put_Medium(tagNACalStandardMedium newVal)
Interface ICalStandard

Write/Read About Modifying Cal Kits

MinimumFrequency Property

Description Sets and Returns the minimum frequency for the calibration standard.
 VB Syntax calstd.MinimumFrequency = value

Variable (Type) - Description
calstd A CalStandard (object). Use calKit.GetCalStandard to get a handle to the

standard.
value (double) -Minimum frequency in Hertz.
Return Type Double
Default Not Applicable

calstd.MinimumFrequency = 300e3 ’WriteExamples
minFrequency = calstd.MinimumFrequency ’Read

C++ Syntax HRESULT get_MinimumFrequency(double *pVal)

 HRESULT put_MinimumFrequency(double newVal)
Interface ICalStandard

Write/Read. About Modifying Cal Kits

Type (calstd) Property

Description Sets and Returns the type of calibration standard.
 VB Syntax calstd.Type = value

Variable (Type) - Description
calstd A CalStandard (object). Use calKit.GetCalStandard to get a handle to the

standard.
value (enum NACalStandardType) -Choose from:

105

 0 - naOpen
 1 - naShort
 2 - naLoad
 3 - naThru

Return Type Long Integer
Default Not Applicable

calstd.Type = naOpen ’WriteExamples
standardtype = calstd.Type ’Read

C++ Syntax HRESULT get_Type(tagNACalStandardType *pVal)

 HRESULT put_Type(tagNACalStandardType newVal)
Interface ICalStandard

Write/Read About Modifying Cal Kits

TZImag Property

Description Sets and Returns the TZImag value (the Imaginary Terminal Impedance
value) for the calibration standard. Only applicable when "Type" is set to
naArbitraryImpedance.
To set the other resistance values, use TZReal

 VB Syntax calstd.TZImag = value

Variable (Type) - Description
calstd A CalStandard (object). Use calKit.GetCalStandard to get a handle to the

standard.
value (single) - Value for TZImag in Ohms
Return Type Single
Default Not Applicable

calstd.TZImag = 15 ’Write the value of TZImag to 15 OhmsExamples
imp0 = calstd.TZImag ’Read the value of TZImag

C++ Syntax HRESULT TZImag([out, retval] float *pVal);

 HRESULT TZImag([in] float newVal);
Interface ICalStandard2

Write/Read About Modifying Cal Kits

TZReal Property

Description Sets and Returns the TZReal value (the real Terminal Impedance value)
for the calibration standard. Only applicable when "Type" is set to
naArbitraryImpedance.
To set the other resistance values, use TZImag

 VB Syntax calstd.TZReal = value

Variable (Type) - Description
calstd A CalStandard (object). Use calKit.GetCalStandard to get a handle to the

standard.
value (single) - Value for TZReal in Ohms

106

Return Type Single
Default Not Applicable

calstd.TZReal = 15 ’Write the value of TZReal to 15 OhmsExamples
imp0 = calstd.TZReal ’Read the value of TZReal

C++ Syntax HRESULT TZReal([out, retval] float *pVal);

 HRESULT TZReal([in] float newVal);
Interface ICalStandard2

Write/Read About Modifying Cal Kits

Z0 Property

Description Sets and Returns the characteristic impedance for the calibration
standard.

 VB Syntax calstd.Z0 = value

Variable (Type) - Description
calstd A CalStandard (object). Use calKit.GetCalStandard to get a handle to the

standard.
value (single) -Impedance in Ohms
Return Type Single
Default Not Applicable

calstd.Z0 = 50 ’WriteExamples
impedance = calstd.Z0 ’Read

C++ Syntax HRESULT get_Z0(float *pVal)

 HRESULT put_Z0(float newVal)
Interface ICalStandard

ICalStandard Interface
ICalStandard2_Interface

Description
This interface extends the CalStandard interface. Use this interface to set and read complex
impedance values.

Methods Description
None
Properties Description
TZReal Sets and Returns the TZReal value (the Real Terminal Impedance

value) for the calibration standard, when the Type is set to
"naArbitraryImpedance".

TZImag Sets and Returns the TZImag value (the Imaginary Terminal
Impedance value) for the calibration standard, when the Type is set to
"naArbitraryImpedance".

Channel Object

107

Channel Object

Description
The channel object is like the engine that produces data. Channel settings consist of stimulus
values like frequency, power, IF bandwidth, and number of points.
You can get a handle to a channel in a number of ways. But first you have to make sure that the
channel exists. When you first startup the analyzer, there is one S11 measurement on channel 1.
Thus there is only one channel in existence. You can do the following:
Dim chan as Channel
 ’
 Set chan = pna.ActiveChannel

or
Set chan = pna.Channels(n)
The first method will return the channel object that is driving the active measurement. When you
ask for the ActiveChannel, you get the channel that is driving the active measurement. If there is
no measurement, there may not be a channel. Once a channel is created, it does not go away.
So if there once was a measurement (hence a channel), the channel will still be available. If there
is no channel you can create one in a couple ways. Here’s one way:
Pna.CreateMeasurement(ch1, "S11", port1, window2)

Here’s another:
Pna.Channels.Add (ch2)
The latter will have no visible effect on the analyzer. It will simply create channel 2 if it does not
already exist.

Method Description
Abort Aborts the current measurement sweep on the channel.
AveragingRestart Clears and restarts averaging of the measurement data.
Continuous The channel continuously responds to trigger signals.
CopyToChannel Sets up another channel as a copy of this object’s channel.
getSourcePowerCalData Returns requested source power calibration data, if it exists.
GetXAxisValues Returns the channel's X-axis values into a dimensioned Variant array.
GetXAxisValues2 Returns the channel's X-axis values into a dimensioned NON-Variant

array.
Hold Puts the Channel in Hold - not sweeping.
Next_IFBandwidth A function that returns the Next higher IF Bandwidth value.
NumberOfGroups Sets the Number of trigger signals the channel will receive.
Preset Resets the channel to factory defined settings.
PreviousIFBandwidth Returns the previous IF Bandwidth value.
putSourcePowerCalData Inputs source power calibration data to this channel for a specific

source port.
SelectCal Set Specifies the Cal Set to use for the Channel
Single Channel responds to one trigger signal from any source (internal,

external, or manual). Then channel switches to Hold.
Property Description
AlternateSweep Sets sweeps to either alternate or chopped.
Attenuator Sets or returns the value of the attenuator control for the specified

port number.
AttenuatorMode Sets or returns the mode of operation of the attenuator control for the

specified port number.
Averaging Turns trace averaging ON or OFF for all measurements on the

channel.
AveragingCount Returns the number of sweeps that have been averaged into the

measurements.
AveragingFactor Specifies the number of measurement sweeps to combine for an

108

average.
Calibrator (object)
centerFrequency Sets or returns the center frequency of the channel.

Shared with the Segment Object
channelNumber Returns the Channel number.

Shared with the Measurement Object
CouplePorts Turns ON and OFF port power coupling.
CWFrequency Set the Continuous Wave (CW) frequency.
DwellTime Sets or returns the dwell time for the channel.

Shared with the Segment Object
FrequencyOffsetDivisor Part of formula used to determine offset frequency of receivers
FrequencyOffsetFrequency Part of formula used to determine offset frequency of receivers
FrequencyOffsetMultiplier Part of formula used to determine offset frequency of receivers
FrequencyOffsetCWOverrid
e

Establishes a fixed (CW) stimulus frequency while measuring swept
response frequency range.

FrequencyOffsetState Turns frequency Offset ON and OFF
FrequencySpan Sets or returns the frequency span of the channel.

Shared with the Segment Object
IFBandwidth Sets or returns the IF Bandwidth of the channel.

Shared with the Segment Object
NumberOfPoints Sets or returns the Number of Points of the channel.

Shared with the Segment Object
Parent Returns a handle to the parent object of the channel.
PowerSlope Sets or returns the Power Slope value.
R1InputPath Throws internal reference switch (option 081)
ReceiverAttenuator Sets or returns the value of the specified receiver attenuator control.
Segments (collection)
SourcePowerCorrection Turns source power correction ON or OFF for a specific source port.
StartFrequency Sets or returns the start frequency of the channel.

Shared with the Segment Object
StartPower Sets the start power of the analyzer when sweep type is set to Power

Sweep.
StopFrequency Sets or returns the stop frequency of the channel.

Shared with the Segment Object
StopPower Sets the Stop Power of the analyzer when sweep type is set to Power

Sweep.
SweepGenerationMode Sets the method used to generate a sweep: continuous ramp (analog)

or discrete steps (stepped).
SweepTime Sets the Sweep time of the analyzer.
SweepType Sets the type of X-axis sweep that is performed on a channel.
TestPortPower Sets or returns the RF power level for the channel.

Shared with the Segment Object
TriggerMode Determines the measurement that occurs when a trigger signal is

sent to the channel.
UserRangeMax Sets the stimulus stop value for the specified User Range.
UserRangeMin Sets the stimulus start value for the specified User Range.
XAxisPointSpacing Sets X-Axis point spacing for the active channel.

Write-only About Triggering

109

Abort Method

Description Ends the current measurement sweep on the channel.
 VB Syntax chan.Abort [sync]

Variable (Type) - Description
chan (object) - A Channel object
sync (boolean) - wait (or not) for the analyzer to stop before processing

subsequent commands. Optional argument; if unspecified, value is set to
False. Choose from:
 True - synchronize - the analyzer will not process subsequent commands
until the current measurement is aborted.
 False - continue processing commands immediately

Return Type None
Default None

Examples chan.abort True

 chan.abort

C++ Syntax HRESULT Abort(VARIANT_BOOL bSynchronize);
Interface IChannel

Write-only About Averaging

AveragingRestart Method

Description Clears and restarts averaging of the measurement data.
 VB Syntax chan.AveragingRestart

Variable (Type) - Description
chan A Channel (object)
Return Type Not Applicable
Default Not Applicable

Examples chan.AveragingRestart

C++ Syntax HRESULT AveragingRestart()
Interface IChannel

Write-only About Triggering

Continuous Method

Description The channel continuously responds to trigger signals.
Note: This command does NOT change TriggerSignal to Continuous.

 VB Syntax chan.Continuous

Variable (Type) - Description
chan A Channel (object)
Return Type Not Applicable
Default Not Applicable

Examples chan.Continuous

110

C++ Syntax HRESULT Continuous()
Interface IChannel

Write-only

CopyToChannel Method

Description Sets up another channel as a copy of this object’s channel.
 VB Syntax chan.CopyToChannel(lChanNum)

Variable (Type) - Description
chan A Channel (object)
IChanNum (long integer) – Number of the channel to become a copy of this

channel.
Return Type None
Default Not Applicable

Examples Dim chan As Channel

Set chan = PNAapp.ActiveChannel
Const lNEW_CHAN_NUM As Long = 2
chan.CopyToChannel(lNEW_CHAN_NUM)

C++ Syntax HRESULT CopyToChannel(long lChanNum);
Interface IChannel2

Read-only About Source Power Cal

getSourcePowerCalData Method

Description Retrieves (as variant data type) requested source power calibration data,

if it exists, from this channel.
Note: This method returns a variant which is less efficient than methods
available on the ISourcePowerCalData interface

 VB Syntax data = chan.getSourcePowerCalData sourcePort

Variable (Type) - Description
data (variant) – Array to store the data.
chan (object) – A Channel object
sourcePort (long integer) – The source port for which calibration data is being

requested.
Return Type Variant array – automatically dimensioned to the size of the data.
Default Not Applicable

Examples Dim varData As Variant

 Const port1 As Long = 1
 varData = chan.getSourcePowerCalData port1
 'Print the data
 For i = 0 to chan.NumberOfPoints - 1
 Print varData(i)
 Next i

C++ Syntax HRESULT getSourcePowerCalData(long sourcePort, VARIANT *pData);
Interface IChannel

111

Read-only About Segment Sweep

GetXAxisValues2 Method

Description Returns the channel’s X-axis values into a dimensioned Typed array.
GetXAxisValues2 is a convenient method for determining the frequency
of each point when the points are not linearly spaced - as in segment
sweep.

Note: This method will fail if called using a scripting client such as
VBScript or Agilent Vee, (see remarks)

Note: In Segment Sweep, chan.NumberofPoints will return the total
number of data points for the combined segments.

 VB Syntax chan.GetXAxisValues2 numPts,data

Variable (Type) - Description
chan (object) - A Channel object
numPts (long integer) - Number of data points in the channel
data (double) Single dimensioned array of data matching the number of points

in the channel.
Return Type double
Default Not applicable

Examples Dim App As Application

 Set App = New Application
 Dim numPoints As Long
 Dim values() As Double
 numPoints = App.ActiveChannel.NumberOfPoints
 ReDim values(numPoints)
 App.ActiveChannel.GetXAxisValues2 numPoints, values(0)
 Print values(0), values(1)

C++ Syntax HRESULT GetXAxisValues2(long* pNumValues, double* stimulus)
Interface IChannel

Remarks:
This method will fail if called using a scripting client such as VBScript or Agilent Vee.
This method also cannot be called using late-bound typing in Visual Basic. For instance, if, in the
example above, the first line were replaced with "Dim App as Object", then this method would fail.
Use the GetXAxisValues method as a replacement. This method works for these COM
environments.

Read-only About Segment Sweep

GetXAxisValues Method

Description Returns the channel’s X-axis values. GetXAxisValues is a

convenient method for determining the frequency of each point
when the points are not linearly spaced - as in segment sweep.
Note: This method returns a variant which is less efficient than

112

GetXAxisValues2.
Note: In Segment Sweep, chan.NumberofPoints will return the
total number of data points for the combined segments.

 VB Syntax data = chan.GetXAxisValues

Variable (Type) - Description
data Variant array to store the data.
chan A Channel (object)
Return Type Variant
Default Not Applicable

Examples Dim varData As Variant

 Dim i As Integer
 varData = chan.GetXAxisValues
 ’Print Data
 For i = 0 To chan.NumberOfPoints - 1
 Print varData(i)
 Next i

C++ Syntax HRESULT GetXAxisValues (VARIANT* xData)
Interface IChannel

Write-only About Triggering

Hold Method

Description Puts the Channel in Hold - not sweeping.
 VB Syntax chan.Hold [sync]

Variable (Type) - Description
chan A Channel (object)
[sync] (boolean) - Optional argument. A variable set to either True or False.

True - program control waits until the channel is in the Hold state.
 False - program control continues immediately. You are not guaranteed
the channel is in Hold yet.

Return Type Not Applicable
Default Not Applicable

Examples wate = True

 chan.Hold wate

C++ Syntax HRESULT Hold(VARIANT_BOOL bWait)
Interface IChannel

Write-only About Dynamic Range

NextIFBandwidth Method

Description A function that returns the Next higher IF Bandwidth value. Use to
retrieve the list of available IFBandwidth settings.

 VB Syntax chan.Next_IFBandwidth bw

113

Variable (Type) - Description
chan A Channel (object)
bw (double) - The argument that you use to send an IFBandwidth. The

function uses this argument to return the Next higher IFbandwidth.
Return Type Double
Default Not Applicable

Examples Public pnbw As Double ’declare variable outside of

procedure

pnBW = chan.IFBandwidth ’put the current IFBW in pnBW
 chan.Next_IFBandwidth pnBW ’function returns the Next higher
IFBandwidth.
 chan.IFBandwidth = pnBW ’set IFBW to the Next value

C++ Syntax HRESULT Next_IFBandwidth (double *pVal)
Interface IChannel

Write-only About Triggering

NumberOfGroups Method

Description Sets the Number of trigger signals the channel will receive. After the
channels has received that number of trigger signals, the channel
switches to Hold mode.
To begin sweeping the number of groups, send app.Continuous

 VB Syntax chan.NumberOfGroups num, sync

Variable (Type) - Description
chan A Channel (object)
num (long integer) Number of trigger signals the channel will receive. Choose

any number between 1 and 2 million
sync (boolean)

 Variable set to either:
 True - subsequent commands are not processed until the groups are
complete. Do not use with manual trigger.
 False - subsequent commands are processed immediately

Return Type Not Applicable
Default Not Applicable

Examples chan.NumberOfGroups

C++ Syntax HRESULT NumberOfGroups(long count, VARIANT_BOOL bWait)
Interface IChannel

Write-only About Dynamic Range

PreviousIFBandwidth Method

Description A function that returns the previous IF Bandwidth value. Use to retrieve
the list of available IFBandwidth settings.

 VB Syntax chan.Previous_IFBandwidth bw

Variable (Type) - Description

114

chan A Channel (object)
bw (double) - The argument that you use to send an IFBandwidth. The

function uses this argument to return the previous IFbandwidth.
Return Type Double
Default Not Applicable

Examples Public pnbw As Double ’declare variable outside of

procedure

PreBW = chan.IFBandwidth ’put the current IFBW in PreBW
 chan.Previous_IFBandwidth PreBW ’function returns the Previous
IFBandwidth of the current one.
 chan.IFBandwidth = PreBW ’set IFBW to the previous value

C++ Syntax HRESULT Previous_IFBandwidth (double *pVal)
Interface IChannel

Write-only About Source Power Cal

putSourcePowerCalData Method

Description Inputs source power calibration data (as variant data type) to this channel

for a specific source port.
 VB Syntax chan.getSourcePowerCalData sourcePort, data

Variable (Type) - Description
chan (object) – A Channel object
sourcePort (long integer) – The source port for which calibration data is being

requested.
data (variant) – Array of source power cal data being input.
Return Type None
Default Not Applicable

Examples chan.putSourcePowerCalData 1, varData

C++ Syntax HRESULT putSourcePowerCalData(long sourcePort, VARIANT varData);
Interface IChannel

Write-only

SelectCalSet Method

Description Selects a Cal Set to apply to the measurements on the calling channel.

If the cal set's GUID is not found, this method returns E_NA_Cal
Set_NOT_FOUND.
Note: Error Correction is not automatically applied as a result of this
command being issued. If there is more than one Cal Type in the Cal Set,
you must explicitly choose the Cal Type you want to apply. (See
meas.Caltype)I

 VB Syntax channel.SelectCalSet GUID, restore

Variable (Type) - Description
channel (object) - A Channel object
GUID (string) - GUID number of the Cal Set to select

115

restore (boolean) -
True (1) - The stimulus stored with the cal set will be applied to the
channel.
False (0) - If a conflict is detected between the existing channel settings
and the Cal Set stimulus settings, then the following will occur:
If interpolation is ON, then interpolation will be attempted. This may fail if
the channel frequency is outside the range of the Cal Set.
If interpolation is OFF, the selection will be abandoned and an error is
returned: E_NA_CAL_STIMULUS_VALUES_EXCEEDED

Return Type Not Applicable
Default Not Applicable

Example channel.SelectCalSet GUID, 1

C++ Syntax HRESULT SelectCalSet (BSTR strGUID, bool bRestore);
Interface IChannel

Write-only About Triggering

Single Method

Description Sets the trigger count to 1, which will cause the channel to respond to
exactly one trigger signal from any source (internal, external, or manual).

 VB Syntax chan.Single [sync]

Variable (Type) - Description
chan A Channel (object)

[sync] (boolean) -Optional argument. A variable set to either True or False.
True - The analyzer waits until the trigger is completed to process
subsequent commands.
 False - Subsequent commands are processed immediately.

Return Type Not Applicable
Default Not Applicable

Examples sync = True

 chan.Single sync

C++ Syntax HRESULT Single(VARIANT_BOOL bWait)
Interface IChannel

Write/Read About Sweeping

AlternateSweep Property

Description Sets sweeps to either alternate or chopped.
 VB Syntax chan.AlternateSweep = value

Variable (Type) - Description
chan A Channel (object)
value (boolean) - Choose either:

False (0) - Sweep mode set to Chopped - reflection and transmission
are measured on the same sweep.

116

 True (1) - Sweep mode set to Alternate - reflection and transmission
measured on separate sweeps. Improves Mixer bounce and Isolation
measurements. Increases cycle time.

Return Type boolean
Default False (0)

chan.AlternateSweep = True ’WriteExamples
altSwp = chan.AlternateSweep ’Read

C++ Syntax HRESULT AlternateSweep(VARIANT_BOOL *pVal)

 HRESULT AlternateSweep(VARIANT_BOOL newVal)
Interface IChannel

Read-only

Application Property

Description Returns the name of the Analyzer making measurements on the channel.
 VB Syntax chan.Application

Variable (Type) - Description
chan A Channel (object)
Return Type object
Default None

Examples rfna = chan.Application ’returns the Analyzer name

C++ Syntax HRESULT get_Application(IApplication** Application)
Interface IChannel

Write/Read About Attenuation

AttenuatorMode Property

Description Sets or returns the mode of operation of the attenuator control for the
specified port number. This command is automatically set to Manual
when an Attenuator value is set.

 VB Syntax chan.AttenuatorMode(portNum) = value

Variable (Type) - Description
chan A Channel (object)
portNum (long) - Port number (1 or 2) of attenuator control to be changed.
value (enum NAModes) - Choose from:

0 - naAuto - Attenuator control set to automatic. The analyzer will set the
attenuator control appropriately to deliver the specified power at the
source.
1 - naManual - Specify the attenuator setting using chan.Attenuator

117

(which automatically sets AttenuatorMode = naManual.
Return Type NAModes
Default 0 - Auto

chan.AttenuatorMode(1) = naAuto ’WriteExamples
attn = chan.AttenuatorMode(1) ’Read

C++ Syntax HRESULT get_AttenuatorMode(long port, tagNAModes* pVal)

 HRESULT put_AttenuatorMode(long port, tagNAModes newVal)
Interface IChannel

Write/Read About Attenuation

Attenuator Property

Description Sets or returns the value of the attenuator control for the specified port
number. Sending this command automatically sets AttenuatorMode to
Manual.

 VB Syntax chan.Attenuator(portNum) = value

Vaariable (Type) - Description
chan A Channel (object)
portNum (long integer) - Port number (1 or 2) of attenuator control to be changed.
value (double) - Attenuator value in dB in 10dB steps. Choose any Long

Integer between 0 and 70
If an invalid value is entered, the analyzer will select the next lower valid
value. For example, if 19.9 is entered the analyzer will select 10 dB
attenuation.

Return Type Double
Default 20 dB

chan.Attenuator(1) = 20 ’WriteExamples
attn = chan.Attenuator(cnum) ’Read

C++ Syntax HRESULT get_Attenuator(long port, double *pVal)

 HRESULT put_Attenuator(long port, double newVal)
Interface IChannel

Write/Read About Averaging

Averaging Property

Description Turns trace averaging ON or OFF for all measurements on the channel.
Averaging is only allowed on ratioed measurements; not on single input
measurements.

 VB Syntax chan.Averaging = state

Variable (Type) - Description
chan A Channel (object)
state (boolean)

118

 0 - Turns averaging OFF
 1 - Turns averaging ON

Return Type Boolean
Default 0

chan.Average = 1 ’WriteExamples
averg = chan.Averaging ’Read

C++ Syntax HRESULT get_Averaging(BOOL *pVal)

 HRESULT put_Averaging(BOOL newVal)
Interface IChannel

Read-only About Averaging

AveragingCount Property

Description Returns the number of sweeps that have been acquired and averaged
into the measurements on this channel. AveragingFactor specifies the
number of sweeps to average. AveragingCount indicates the progress
toward that goal.

 VB Syntax value = chan.AveragingCount

Variable (Type) - Description
chan A Channel (object)
value (Long Integer) - Variable to store the returned count
Return Type Long Integer
Default Not Applicable

Example avgcount = chan.AveragingCount

C++ Syntax HRESULT get_AveragingCount(long* count)
Interface IChannel

Write/Read About Averaging

AveragingFactor Property

Description Specifies the number of measurement sweeps to combine for an
average. Must also turn averaging ON by setting chan.Averaging = 1.
Averaging is only allowed on ratioed measurements; not on single input
measurements.

 VB Syntax chan.AveragingFactor = value

Variable (Type) - Description
chan A Channel (object)
value (Long Integer) - Number of measurement sweeps to average. Choose

any number between 1 and 1024.
Return Type Long Integer
Default 1

chan.AveragingFactor = 5 ’WriteExamples
avgfact = chan.AveragingFactor ’ doesn’t work -Read

119

C++ Syntax HRESULT get_AveragingFactor(long *pVal)

 HRESULT put_AveragingFactor(long newVal)
Interface IChannel

Write/Read About Frequency

CenterFrequency Property

Description Sets or returns the center frequency of the channel
 or
 Sets or returns the center frequency of the segment.
see also Measurement2 interface

 VB Syntax object.centerFrequency = value

Variable (Type) - Description
object A Channel (object)

 or
 A Segment (object)

value (double) - Center frequency in Hertz. Choose any number between the
minimum and maximum frequencies of the analyzer.

Return Type Double
Default Center of the frequency range

chan.centerFrequency = 4.5e9 ’sets the center frequency of a linear
sweep for the channel object -Write

Examples

centfreq = chan.centerFrequency ’Read

C++ Syntax HRESULT get_CenterFrequency(double *pVal)

 HRESULT put_CenterFrequency(double newVal)
Interface IChannel

 ISegment

Read-only About Channels

ChannelNumber Property

Description Returns the Channel number of the Channel or Measurement object.
 VB Syntax object.ChannelNumber

Variable (Type) - Description
object A Channel (object)

 or
 A Measurement (object)

Return Type Long Integer
Default Not applicable

Examples chanNum = chan.ChannelNumber ’returns the channel number

120

 chanNum = meas.ChannelNumber ’returns the channel number of the
measurement

C++ Syntax HRESULT get_ChannelNumber(long *pVal)
Interface IChannel

 IMeasurement

Write/Read About Power Coupling

CouplePorts Property

Description Turns ON and OFF port power coupling. ON means the power level is the
same for both ports. OFF means the power level may be set
independently for each port.

 VB Syntax chan.CouplePorts = value

Variable (Type) - Description
chan A Channel (object)
value (enum NAStates) Choose from:

 0 - NaOff - Turns coupling OFF
 1 - NaOn - Turns coupling ON

Retaurn Type Long Integer
 1 - ON
 0 - OFF

Default NaON (1)

chan.CouplePorts = NaOff ’WriteExamples
couplport = chan.CouplePorts ’Read

C++ Syntax HRESULT get_CouplePorts(tagNAStates *pState)

 HRESULT put_CouplePorts(tagNAStates newState)
Interface IChannel

Write/Read About CW Frequency

CW Frequency Property

Description Set the Continuous Wave (CW) frequency. Must first send
chan.SweepType = naCWTimeSweep

 VB Syntax chan.CWFrequency = value

Variable (Type) - Description
chan A Channel (object)
value (double) CW frequency. Choose any number between:

 the minimum and maximum frequency limits of the analyzer
 Units are Hz

Return Type Double
Default 1e9

chan.CWFrequency = 5e9 ’WriteExamples
cwfreq = chan.CWFrequency ’Read

121

C++ Syntax HRESULT put_CWFrequency(double newVal)
 HRESULT get_CWFrequency(double *pVal)

Interface IChannel

Write/Read About Dwell Time

DwellTime Property

Description Sets or returns the dwell time at the start of each sweep point for all
measurements in a channel. Dwell time is only available with
Chan.SweepGenerationMode = naSteppedSweep (not
naAnalogSweep).
Sets or returns the dwell time of a specified sweep segment.

 VB Syntax object.DwellTime = value

Variable (Type) - Description
object A Channel (object) or

 A Segment (object)
value (double) - Dwell Time in seconds. Choose any number between:

 0 and 100e-3
Return Type Double
Default 0

chan.DwellTime = 3e-3 ’sets the dwell time for the
channel -Write

segs(3).CenterFrequency = 1e9 ’sets the dwell time of segment 3 -Write

Examples

dwell = chan.DwellTime ’Read

C++ Syntax HRESULT get_DwellTime(double *pVal)

 HRESULT put_DwellTime(double newVal)
Interface IChannel

 ISegment

Write/Read About Frequency Range

FrequencySpan Property

Description Sets or returns the frequency span of the channel.
Sets or returns the frequency span of the segment.

 VB Syntax object.FrequencySpan = value

Variable (Type) - Description
object A Channel (object)

 or
 A Segment (object)

value (double) - Frequency span in Hertz. Choose any number between the
minimum and maximum frequencies of the analyzer.

Return Type Double
Default Full frequency span of the analyzer

122

chan.FrequencySpan = 4.5e9 ’sets the frequency span of a linear sweep
for the channel object -Write

Examples

freqspan = chan.FrequencySpan ’Read

C++ Syntax HRESULT get_FrequencySpan(double *pVal)

 HRESULT put_FrequencySpan(double newVal)
Interface IChannel

 ISegment

Write/Read About Frequency Offset
FrequencyOffsetCWOverride Property

Description Establishes a fixed (CW) stimulus frequency while measuring the

Response over a swept frequency range. For example, a fixed-frequency
PNA stimulus may be applied to the RF input of a mixer whose local
oscillator (LO) is being swept. Because the IF output of the mixer will be
swept, the PNA receivers must also be swept.
See other Frequency Offset properties.

 VB Syntax chan.FrequencyOffsetCWOverride = value

Variable (Type) - Description
chan A Channel (object)
value (Enum as NaStates) - Choose from:

naOFF (0) - Turns CW override OFF
naON (1) - Turns CW override ON

Return Type Enum
Default 0 Hz

chan.FrequencyOffsetCWOverride = 1 ’WriteExamples
fOffsetOV = chan.FrequencyOffsetCWOverride ’Read

C++ Syntax HRESULT get_FrequencyOffsetCWOverride (tagNAStates *pstate)

 HRESULT put_FrequencyOffsetCWOverride (tag NAStates newState)
Interface IChannel2

Write/Read About Frequency Offset
FrequencyOffsetDivisor Property

Description Specifies (along with FrequencyOffsetMultiplier) the value to multiply by

the stimulus.
See other Frequency Offset properties

 VB Syntax chan.FrequencyOffsetDivisor = value

Variable (Type) - Description
chan A Channel (object)
value (Double) - Divisor value. Range is 1 to 1000
Return Type Double
Default 1

123

chan.FrequencyOffsetDivisor = 2 ’WriteExamples
fOffsetDiv = chan.FrequencyOffsetDivisor ’Read

C++ Syntax HRESULT get_FrequencyOffsetDivisor(double*pval)

HRESULT put_FrequencyOffsetDivisor(double newVal)
Interface IChannel2

Write/Read About Frequency Offset
FrequencyOffsetFrequency Property

Description Specifies an absolute offset frequency in Hz. For mixer measurements,

this would be the LO frequency. See other Frequency Offset properties.
 VB Syntax chan.FrequencyOffsetFrequency = value

Variable (Type) - Description
chan A Channel (object)
value (Double) - Offset value. Range is +/- 1000 GHz. (Offsets can be positive

or negative.)
Return Type Double
Default 0 Hz

chan.FrequencyOffsetFrequency = 2 ’WriteExamples
fOffsetFreq = chan.FrequencyOffsetFrequency ’Read

C++ Syntax HRESULT get_FrequencyOffsetFrequency(double*pval)

 HRESULT put_FrequencyOffsetFrequency(double newVal)
Interface IChannel2

Write/Read About Frequency Offset
FrequencyOffsetMultiplier Property

Description Specifies (along with FrequencyOffsetDivisor) the value to multiply by the

stimulus. See other Frequency Offset properties.
 VB Syntax chan.FrequencyOffsetMultiplier = value

Variable (Type) - Description
chan A Channel (object)
value (Double) - Multiplier value. Range is 1 to 1000
Return Type Double
Default 1

chan.FrequencyOffsetMultiplier = 2 ’WriteExamples
fOffsetMult = chan.FrequencyOffsetMultiplier ’Read

C++ Syntax HRESULT get_FrequencyOffsetMultiplier (double*pval);

 HRESULT put_FrequencyOffsetMultiplier (double newVal);
Interface IChannel2

Write/Read About Frequency Offset

124

FrequencyOffsetState Property

Description Enables Frequency Offset on ALL measurements that are present on the
active channel. This immediately causes the source and receiver to tune
to separate frequencies. The receiver frequencies are specified with other
channel and offset settings. To make the stimulus settings, use Channel
Start, Stop Frequency properties. See other Frequency Offset properties.
Tip: To avoid unnecessary errors, first make other frequency offset
settings. Then turn Frequency Offset ON.

 VB Syntax chan.FrequencyOffsetState = value

Variable (Type) - Description
chan A Channel (object)
value (Enum as NaStates) - Choose from:

naOFF (0) - Turns Frequency Offset OFF
naON (1) - Turns Frequency Offset ON

Return Type Enum
Default naOFF (0)

chan.FrequencyOffsetState = True ’WriteExamples
Foffset = chan.FrequencyOffsetState ’Read

C++ Syntax HRESULT FrequencyOffsetState (tag NAStates *pState);

 HRESULT FrequencyOffsetState (tag NAStates newState)
Interface IChannel2

Write/Read About IF Bandwidth

IFBandwidth Property

Description Sets or returns the IF Bandwidth of the channel.
 Sets or returns the IF Bandwidth of the segment.

 VB Syntax object.IFBandwidth = value

Variable (Type) - Description
object A Channel (object) or

 A Segment (object)
value (double) - IF Bandwidth in Hz. Choose from:

1 | 2 | 3 | 5 | 7 | 10 | 15 | 20 | 30 | 50 | 70 | 100 | 150 | 200 | 300 | 500 |
700 | 1000 | 1500 | 2000 | 3000 | 5000 | 7000 | 10000 | 15000 | 20000 |
30000 | 35000 | 40000 |
If a number other than these is entered, the analyzer will round up to the
closest valid number (unless a number higher than the maximum in
entered.)

Return Type Double
Default 3500

chan.IFBandwidth = 3e3 ’sets the IF Bandwidth of for the channel object
to 3 kHz. -Write
 seg.IFBandwidth = 5 ’sets the IF Bandwidth of the segment to 5 Hz. -
Write

Examples

ifbw = chan.IFBandwidth -Read

C++ Syntax HRESULT get_IFBandwidth(double *pVal);

 HRESULT put_IFBandwidth(double newVal);
Interface IChannel

125

 ISegment

Write/Read About Number of Points

NumberOfPoints Property

Description Sets or returns the Number of Points of the channel.
 Sets or returns the Number of Points of the segment.
see also Measurement2 interface

 VB Syntax object.NumberOfPoints = value

Variable (Type) - Description
object A Channel (object) or

 A Segment (object)
value (long) - Number of Points.

For channel, choose any number from 1 to 16001.
For segment, the total number of points in all segments cannot exceed
16001. A segment can have as few as 1 point.

Return Type Long Integer
Default 201 for channel

21 for segment

chan.NumberOfPoints = 201 ’sets the number of points for all
measurements in the channel. -Write

Examples

numofpts = chan.NumberOfPoints ’Read

C++ Syntax HRESULT get_NumberOfPoints(long *pVal)

 HRESULT put_NumberOfPoints(long newVal)
Interface IChannel

 ISegment

Write/Read About Power Slope

PowerSlope Property

Description Sets or returns the Power Slope value. Power Slope function increases or
decreases the output power over frequency. Units are db/GHz. For
example: PowerSlope = 2 will increase the power 2db/1GHZ.

 VB Syntax app.PowerSlope = value

Variable (Type) - Description
app An Application (object)
value (double) - Power Slope. Choose any number between -2 and 2.

 No slope = 0
Return Type Double
Default 0

app.PowerSlope = 2 ’WriteExamples
pwrslp = app.PowerSlope ’Read

126

C++ Syntax HRESULT get_PowerSlope(double *pVal)
 HRESULT put_PowerSlope(double newVal)

Interface IChannel

Write/Read About Frequency Offset
R1InputPath Property

Description PNA models with option 081 have a switch in the test set that allows

access to the port 1 reference receiver through the front panel Reference
1 connectors. This command throws that switch between the internal path
to the receiver, or through the external connectors. You could use this
feature to make converter measurements relative to a reference
("golden") mixer. See other Frequency Offset properties

 VB Syntax chan.R1InputPath = value

Variable (Type) - Description
chan A Channel (object)
value (Enum as naInputPath) - Choose from:

naPathInternal - (0) - internal path to the reference receiver
 naPathExternal (1) - path through external connectors

Return Type Enum
Default naPathInternal - (0)

chan.R1InputPath = naPathInternal ’WriteExamples
Inpath = chan.R1InputPath ’Read

C++ Syntax HRESULT get_R1InputPath (tag NAInputPath *pPath);

 HRESULT put_R1InputPath (tag NAInputPath newPath);
Interface IChannel2

Write/Read About Receiver Attenuation

ReceiverAttenuator Property

Description Sets or returns the value of the specified receiver attenuator control.
 VB Syntax chan.ReceiverAttenuator(rec) = value

Variable (Type) - Description
chan A Channel (object)
rec (long integer) - Receiver with attenuator control to be changed. Choose from:

 0 - Receiver A
 1 - Receiver B

value (double) - Attenuator value in dB. Choose any Long Integer between 0 and
35 in 5dB steps:
If an invalid value is entered, the analyzer will select the next lower valid
value. For example, if 19.9 is entered the analyzer will select 15 dB
attenuation.

Return Type Double
Default 0 db

Examples chan.ReceiverAttenuator(1) = 5 ’Write

127

attn = chan.ReceiverAttenuator(rnum) ’Read

C++ Syntax HRESULT get_ReceiverAttenuator(long lport, double *pVal)

 HRESULT put_ReceiverAttenuator(long lport, double newVal)
Interface IChannel

Write / Read About Source Power Cal

SourcePowerCorrection Property

Description Sets source power correction ON or OFF for a specific source port on this
channel, or returns the current ON or OFF state of correction for that
source port.

 VB Syntax chan.SourcePowerCorrection(sourcePort) = value

Variable (Type) - Description
chan (object) – A Channel object
sourcePort (long integer) – Source port for which to set or return the ON or OFF

state of source power correction.
value (boolean)

False (0) – Turns source power correction OFF for the source port.
True (1) – Turns source power correction ON for the source port.

Return Type Boolean
Default False (0) - Source power correction will turn correction ON

Examples chan.SourcePowerCorrection(1) = 1 'Write

 calOnPort2 = chan.SourcePowerCorrection(2) 'Read

C++ Syntax HRESULT put_SourcePowerCorrection(VARIANT_BOOL bState);

HRESULT get_SourcePowerCorrection(VARIANT_BOOL *bState);
Interface IChannel

Write/Read About Linear Frequency Sweep

StartFrequency Property

Description Sets or returns the start frequency of the channel
 or
 Sets or returns the start frequency of the segment.
see also Measurement2 interface

 VB Syntax object.StartFrequency = value

Variable (Type) - Description
object A Channel (object)

 or
 A Segment (object)

value (double) - Start frequency in Hertz. Choose any number between the
minimum and maximum frequencies of the analyzer.

Return Type Double
Default Channel - Minimum frequency of the analyzer

 Segment - 0

128

chan.StartFrequency = 4.5e9 ’sets the start frequency of a linear sweep
for the channel object -Write

Examples

startfreq = Chan.StartFrequency ’Read

C++ Syntax HRESULT get_StartFrequency(double *pVal)

 HRESULT put_StartFrequency(double newVal)
Interface ISegment

Write/Read About Power Sweep

StartPower Property

Description Sets the start power of the analyzer when sweep type is set to Power
Sweep. Frequency of the measurement is set with chan.CWFrequency.

 VB Syntax chan.StartPower = value

Variable (Type) - Description
chan A Channel (object)
value (double) - Start Power in dBm. There is 40 dB of range in power sweep.

The values of start and stop depend on the amount of attenuation that
you specify. With 0 dB of attenuation, the range is -20 dBm to +20 dBm.
With 10 dB of attenuation, the range is -30 dBm to +10 dBm, and so forth.
Auto attenuation is not allowed in Power Sweep.

Return Type Double
Default 0

Chan.StartPower = -10 ’WriteExamples
strtpwr = Chan.StartPower ’Read

C++ Syntax HRESULT get_StartPower(double *pVal)

 HRESULT put_StartPower(double newVal)
Interface IChannel

Write/Read About Linear Frequency Sweep

StopFrequency Property

Description Sets or returns the stop frequency of the channel
 or
 Sets or returns the stop frequency of the segment.
see also Measurement2 interface

 VB Syntax object.StopFrequency = value

Variable (Type) - Description
object A Channel (object)

 or
 A Segment (object)

value (double) - Stop frequency in Hertz. Choose any number between the
minimum and maximum frequencies of the analyzer.

Return Type Double
Default Channel - Maximum frequency of the analyzer

129

 Segment - 0

chan.StopFrequency = 4.5e9 ’sets the stop frequency of a linear sweep
for the channel object -Write

Examples

stopfreq = Chan.StopFrequency ’Read

C++ Syntax HRESULT get_StopFrequency(double *pVal)

 HRESULT put_StopFrequency(double newVal)
Interface IChannel

 ISegment

Write/Read About Power Sweep

StopPower Property

Description Sets the Stop Power of the analyzer when sweep type is set to Power
Sweep. Frequency of the measurement is set with chan.CWFrequency

 VB Syntax chan.StopPower = value

Variable (Type) - Description
chan A Channel (object)
value (double) - Stop Power in dB. Start Power in dB. There is 40 dB of range

in power sweep. The acceptable values of start and stop depend on the
amount of attenuation that you specify. With 0 dB of attenuation, the
range is -20 dBm to +20 dBm. With 10 of attenuation, the range is -30
dBm to +10 dBm, and so forth. Auto attenuation is not allowed in Power
Sweep.

Return Type Double
Default 0

Chan.StopPower = -10 ’WriteExamples
stppwr = Chan.StopPower ’Read

C++ Syntax HRESULT get_StopPower(double *pVal)

 HRESULT put_StopPower(double newVal)
Interface IChannel

Write/Read About Stepped Sweep

SweepGenerationMode Property

Description Sets the method used to generate a sweep: continuous ramp (analog) or
discrete steps (stepped).

 VB Syntax chan.SweepGenerationMode = value

Variable (Type) - Description
chan A Channel (object)
value (enum NASweepGenerationModes) - Choose either:

0 - naSteppedSweep - source frequency is CONSTANT during
measurement of eah displayed point. More accurate than Analog. Dwell
time can be set in this mode.
1 - naAnalogSweep - source frequency is continuously RAMPING during

130

measurement of each displayed point. Faster than Stepped. Sweep time
(not dwell time) can be set in this mode.

Return Type Long Integer
Default Analog

Chan.SweepGenerationMode = naAnalogSweep ’WriteExamples
swpgen = Chan.SweepGenerationMode ’Read

C++ Syntax HRESULT get_SweepGenerationMode(tagNASweepGenerationModes*

pVal)
 HRESULT put_SweepGenerationMode(tagNASweepGenerationModes
newVal)

Interface IChannel

Write/Read About Sweep Time

SweepTime Property

Description Sets the Sweep time of the analyzer. Sweep time is limited so that the
analyzer only sweeps as fast as possible for the current frequency range,
number of points, and IFbandwidth.

 VB Syntax chan.SweepTime = value

Variable (Type) - Description
chan A Channel (object)
value (double) - Sweep time in seconds. Choose a number between:

 0 and 100
Return Type Double
Default 0

chan.SweepTime = 3e-3 ’WriteExamples
swptme = chan.SweepTime ’Read

C++ Syntax HRESULT get_SweepTime(double *pVal)

 HRESULT put_SweepTime(double newVal)
Interface IChannel

Write/Read About Sweep Types

SweepType Property

Description Sets the type of X-axis sweep that is performed on a channel.
 VB Syntax chan.SweepType = value

Variable (Type) - Description
chan A Channel (object)
value (enum NASweepTypes) - Choose from:

0 - naLinearSweep
 1 - naLogSweep
 2 - naPowerSweep
 3 - naCWTimeSweep
 4 - naSegmentSweep

131

Note: Sweep type cannot be set to Segment sweep if there are no
segments turned ON. A segment is automatically turned ON when a
application is created.

Return Type Long Integer
Default naLinearSweep

chan.SweepType = naPowerSweep ’WriteExamples
swptyp = chan.SweepType ’Read

C++ Syntax HRESULT get_SweepType(tagNASweepTypes* pVal)

 HRESULT put_SweepType(tagNASweepTypes newVal)
Interface IChannel

Write/Read About Power Level

TestPortPower Property

Description Sets or returns the RF power level for the channel
 or
 Sets or returns the RF power level of the segment.

 VB Syntax object.TestPortPower(portNum) = value

Variable (Type) - Description
object A Channel (object) - to set coupled power, use chan.CouplePorts. If

CouplePorts = False, then each port power can be set independently.
Otherwise, chanTestPortPower (1) = value sets power level at both ports.
 or
 A Segment (object)

portNum (long integer) - Port number of the source power. Choose from 1 or 2
value (double) - RF Power in dBm. Choose any number between -90 and 20.

Actual achievable leveled power depends on frequency.
Return Type Double
Default 0

chan.TestPortPower(1) = 5 ’sets the port 1 RF power level for the
channel object -Write

Examples

powerlev = Chan.TestPortPower(1) ’Read

C++ Syntax HRESULT get_TestPortPower(long port, double *pVal)

 HRESULT put_TestPortPower(long port, double newVal)
Interface IChannel

 ISegment

Write/Read About Triggering

TriggerMode Property

Description Each trigger signal will cause either:
 all measurements in the channel to be made or
 only a single data point in the channel at a time.

 VB Syntax chan.TriggerMode = value

132

Variable (Type) - Description
chan A Channel (object)
value (enum NATriggerMode) - Choose from:

0 - naTriggerModePoint - a single data point is measured with each
trigger signal the channel receives. Subsequent trigger signals continue
to go to the channel in Point mode until the channel measurements are
complete.
1 - naTriggerModeMeasurement - all measurements in the channel are
made with each trigger signal the channel receives.
Note: Point Mode is not compatible when TriggerType is set to
naGlobalTrigger. If you change any channel to TriggerModePoint,
TriggerType will be set to naChannelTrigger.

Return Type Long Integer
Default 0 - naTriggerModeMeasurement

chan.TriggerMode = naTriggerModePoint ’WriteExamples
trigtyp = chan.TriggerMode ’Read

C++ Syntax HRESULT get_TriggerMode (tagNATriggerMode *pMode)

 HRESULT put_TriggerMode (tagNATriggerMode newMode)
Interface IChannel

Write/Read About User Ranges

UserRangeMax Property

Description Sets the stimulus stop value for the specified User Range.
This property uses different arguments for the channel and marker
objects.

 VB Syntax chan.UserRangeMax(domainType,Mnum) = value
 or
 mark.UserRangeMax(rnum) = value

Variable (Type) - Description
 chan A Channel (object)
mark A Marker (object)

 To assign a marker to a User Range, use the UserRange Property.
Note: The Marker object does not require the "DomainType" argument.

domainType (enum NADomainType) - Choose from:
0 - naDomainFrequency
 1 - naDomainTime
 2 - naDomainPower

Mnum (long integer) - User Range number. Choose any number between 1
and 9 (0=Full Span)

value (double) - Stop value. Choose any number within the full span of the
channel

Return Type Double
Default The current stimulus setting for the channel

mark.UserRangeMax(1) = 3e9 ’Write
 chan.UserRangeMax(naDomainFrequency,1) = 3e9 ’Write

Examples

UseRngeMax = mark.UserRangeMax ’Read
 UseRngeMax = chan.UserRangeMax ’Read

133

C++ Syntax HRESULT put_UserRangeMax(tagNADomainType domain, long
rangeNumber, double maxValue)
 HRESULT get_UserRangeMax(tagNADomainType domain, long
rangeNumber, double *maxValue)

Interface IChannel

Write/Read About User Ranges

UserRangeMin Property

Description Sets the stimulus start value for the specified User Range.
This property uses different arguments for the channel and marker
objects.

 VB Syntax chan.UserRangeMin(domainType,range) = value
 or
 mark.UserRangeMin(range) = value

Variable (Type) - Description
chan A Channel (object)
mark A Marker (object)

 To assign a marker to a User Range, use the UserRange Property.
Note: The Marker object does not require the DomainType argument

domainType (enum NADomainType) Type of sweep currently implemented on the
channel - Choose from:
 0 - naDomainFrequency
 1 - naDomainTime
 2 - naDomainPower

 range (long) - User Range number. Choose any number between 1 and 9
(0=Full Span)

value (double) - Start value. Choose any number within the full span of the
analyzer

Return Type Double
Default The current stimulus setting for the channel

mark.UserRangeMin(1) = 3e9 ’Write
 chan.UserRangeMin(naDomainFrequency,1) = 3e9 ’Write

Examples

UseRngeMin = mark.UserRangeMin ’Read
 UseRngeMin = chan.UserRangeMin ’Read

C++ Syntax HRESULT put_UserRangeMin(tagNADomainType domain, long

rangeNumber, double minValue)
 HRESULT get_UserRangeMin(tagNADomainType domain, long
rangeNumber, double *minValue)

Interface IChannel

Write/Read About X-Axis Spacing

XAxisPointSpacing Property

Description Sets X-axis Point Spacing for the displaytraces measured with segment
sweeps on the active channel.

134

 VB Syntax chan.XAxisPointSpacing = value

Variable (Type) - Description
chan A Channel (object)
value (Enum as naStates) - Choose from:

0 - naOFF - Turns X-axis Point Spacing OFF
1 - naON - Turns X-axis Point Spacing ON

Return Type Enum
Default 0 - naOFF

chan.XAxisPointSpacing = naOFF ’WriteExamples
xspac = chan.XAxisPointSpacing ’Read

C++ Syntax HRESULT get_XAxisPointSpacing (tagNAStates *pState);

 HRESULT put_XAxisPointSpacing (tagNAStates newState);
Interface IChannel2

IChannel2 Interface
IChannel2_Interface

Description
This interface extends the Channel interface. It provides frequency offset capability required for
measuring frequency converting devices.

Methods Description
None
Properties Description
FrequencyOffsetState Enables Frequency Offset on all measurements that are present on

the active channel.
FrequencyOffsetMultiplier Specifies (along with FrequencyOffsetDivisor) the value to multiply by

the stimulus.
FrequencyOffsetDivisor Specifies (along with FrequencyOffsetMultiplier) the value to multiply

by the stimulus.
FrequencyOffsetCWOverrid
e

Establishes a fixed (CW) stimulus frequency while measuring the
Response over a swept frequency range.

R1InputPath With option 081 installed, this command mechanically switches the
signal path to allow access to the port 1 reference receiver through
the front panel Reference 1 connectors.

FrequencyOffsetFrequency Specifies an absolute offset frequency in Hz. For mixer
measurements, this would be the LO frequency.

Channels Collection

Channels Collection

Description
A collection object that provides a mechanism for iterating through the channels
Collections are, by definition, unordered lists of like objects. You cannot assume that
Channels.Item(1) is always Channel 1. For more information, see Collections in the Analyzer.

Methods Description
Add An alternate way to create a measurement.

135

Item Use to get a handle on a channel in the collection.
Properties Description
Count Returns the number of channels in the analyzer.
Parent Returns a handle to the current Application.

Write-only About Channels

Add (channels) Method

Description Creates a channel and returns a handle to it. If the channel already
exists, it returns the handle to the existing channel.

VB Syntax chans.Add (item)
Variable (Type) - Description
chans A Channel collection (object)
item (variant) - Channel number.
Return Type Channel
Default Not Applicable

Examples chans.Add 3 ’Creates channel 3

C++ Syntax HRESULT Add(VARIANT numVal, IChannel** pChannel)
Interface IChannels

Gating Object

Gating Object

Description
Contains the methods and properties that control Time Domain Gating.

Methods
None
Property Description
Center Sets or returns the Center time.

Shared with the Transform Object
Shape Specifies the shape of the gate filter.
Span Sets or returns the Span time.

Shared with the Transform Object
Start Sets or returns the Start time.

Shared with the Transform Object
State Turns an Object ON and OFF.
Stop Sets or returns the Stop time.

Shared with the Transform Object
Type Specifies the type of gate filter used.

136

Write/Read About Gating

Center Property

Description Sets or returns the Center time of either Gating or Time Domain transform
windows

 VB Syntax object.Center = value

Variable (Type) - Description
object (object) As Gating

 or
 (object) As Transform

value (double) - Center time in seconds. Choose any number between:
 ± (points-1) / frequency span

Return Type Double
Default 0

trans.Center = 4.5e-9 ’sets the Center time of a transform window -Write
 gate.Center = 4.5e-9 ’sets the Center time of a gating window -Write

Examples

cnt = trans.Center ’Read

C++ Syntax HRESULT get_Center(double *pVal)

 HRESULT put_Center(double newVal)
Interface ITransform

 IGating

Write/Read About Gate Filter

Shape Property

Description Specifies the shape of the gate filter.
 VB Syntax gat.Shape = value

Variable (Type) - Description
gat A Gating (object)
value (enum NAGateShape) - Choose from:

0 - naGateShapeMaximum
 1 - naGateShapeWide
 2 - naGateShapeNormal
 3 - naGateShapeMinimum

Return Type NAGateShape
Default 2 - Normal

gat.Shape = naGateShapeMaximum ’WriteExamples
filterShape = gat.Shape ’Read

C++ Syntax HRESULT get_Shape(tagNAGateShape *pVal)

 HRESULT put_Shape(tagNAGateShape newVal)
Interface IGating

Write/Read About Time Domain

137

Span Property

Description Sets or returns the Span time of either Gating or Time Domain transform
windows

 VB Syntax object.Span = value

Variable (Type) - Description
object (object) As Gating

 or
 (object) As Transform

value (double) - Span time in seconds. Choose any number between: 2*[(number
of points-1) / frequency span] and 0

Return Type Double
Default 20ns

Trans.Span = 4.5e-9 ’sets the time span of a transform window -Write
 Gate.Span = 4.5e-9 ’sets the Span time of a gating window -Write

Examples

span = Trans.Span ’Read

C++ Syntax HRESULT get_Span(double *pVal)

 HRESULT put_Span(double newVal)
Interface ITransform

 IGating

Write/Read About Time Domain

Start Property

Description Sets or returns the start time of either Gating or Time Domain transform
windows

 VB Syntax object.Start = value

Variable (Type) - Description
object (object) As Gating

 or
 (object) As Transform

value (double) - Start time in seconds. Choose any number between:
 ± (number of points-1) / frequency span

Return Type Double
Default -10ns

Trans.Start = 4.5e-9 ’sets the start time of a transform window -Write
 Gate.Start = 4.5e-9 ’sets the start time of a gating window -Write

Examples

strt = Trans.Start ’Read

C++ Syntax HRESULT get_Start(double *pVal)

 HRESULT put_Start(double newVal)
Interface ITransform

 IGating

Write/Read About Time Domain

138

Stop Property

Description Sets or returns the Stop time of either Gating or Time Domain transform
windows

 VB Syntax object.Stop = value

Variable (Type) - Description
object (object) As Gating

 or
 (object) As Transform

value (double) - Start time in seconds. Choose any number between:
 ± (number of points-1) / frequency span

Return Type Double
Default 10 ns

Trans.Stop = 4.5e-9 ’sets the stop time of a transform window -Write
 Gate.Stop = 4.5e-9 ’sets the stop time of a gating window -Write

Examples

stp = Trans.Stop ’Read

C++ Syntax HRESULT get_Stop(double *pVal)

 HRESULT put_Stop(double newVal)
Interface ITransform

 IGating

Write/Read About Time Domain

Type Property

Description Specifies the type of gate filter used.
 VB Syntax gat.Type = value

Variable (Type) - Description
gat A Gating (object)
value (enum NAGateType) - Choose from:

 0 - naGateTypeBandpass - Includes (passes) the range between the
start and stop times.
 1 - naGateTypeNotch - Excludes (attenuates) the range between the
start and stop times.

Return Type NAGateType
Default Bandpass

gate.Type = naGateTypeNotch ’WriteExamples
filterType = gate.Type ’Read

C++ Syntax HRESULT get_Type(tagNAGateType *pVal)

 HRESULT put_Type(tagNAGateType newVal)
Interface IGating

ICalData Interface

139

ICalData Interface

Description
Contains methods for putting Calibration data in and getting Calibration data out of the analyzer
using typed data. This interface transfers data more efficiently than variant data.
Learn about reading and writing Calibration data.

Method Description
getErrorTermComplex Retrieves error term data
getStandardComplex Retrieves calibration data from the acquisition data buffer (before error-

terms are applied).
putErrorTermComplex Puts error term data
putStandardComplex Puts calibration data into the aquisition data buffer (before error-terms are

applied).
Property Description
None

Read-only About Accessing Data

GetErrorTermComplex Method

Description Retrieves error term data from the error correction buffer. The data is in
complex pairs. Learn more about reading and writing Cal Data using COM.
Note: This method exists on a non-default interface. If you cannot access this
method, use the GetErrorTerm Method on ICalibrator.

 VB Syntax eData.GetErrorTermComplex term, rcv, src, numPts, real(), imag()

Variable (Type) - Description
eData An ICalData pointer to the Calibrator object
term (enum NAErrorTerm) - The error term to be retrieved. Choose from:

• naErrorTerm_Directivity_Isolation
• naErrorTerm_Match

naErrorTerm_Tracking
rcv (long integer) - Receiver Port
src (long integer) - Source Port
numPts (long integer) - on input, max number of data points to return;

 on output: indicates the actual number of data points returned.
real() (single) - array to accept the real part of the error-term. One-dimensional for

the number of data points.
imag() (single) - array to accept the imaginary part of the error-term. One-

dimensional for the number of data points.

To get this Specify these parameters:
Error Term term rcv src
Fwd Directivity naET_Directivity Isolation 1 1
Rev Directivity naET_Directivity Isolation 2 2
Fwd Isolation naET_Directivity Isolation 2 1

140

Rev Isolation naET_Directivity Isolation 1 2
Fwd Source Match naErrorTerm_Match 1 1
Rev Source Match naErrorTerm_Match 2 2
Fwd Load Match naErrorTerm_Match 2 1
Rev Load Match naErrorTerm_Match 1 2
Fwd Reflection Tracking naErrorTerm_Tracking 1 1
Rev Reflection Tracking naErrorTerm_Tracking 2 2
Fwd Trans Tracking naErrorTerm_Tracking 2 1
Rev Trans Tracking naErrorTerm_Tracking 1 2

Return Type Single
Default Not Applicable

Examples ReDim rel(numpts)

 ReDim img(numpts)
 Dim eData As ICalData
 Set eData = chan.Calibrator
 eData.getErrorTermComplex naErrorTerm_Directivity_Isolation, 1, 1, 201,
rel(0), img(0)

C++ Syntax HRESULT raw_getErrorTermComplex(tagNAErrorTerm ETerm, long

ReceivePort, long SourcePort, long* pNumValues, float* pReal, float* pImag)
Interface ICalData

Write-only About Cal Sets

GetStandardComplex Method

Description Queries standards acquisition data from the Cal Set. The data is in
complex pairs. Learn more about reading and writing Cal Data using
COM.
Before calling this method from the ICalData2 interface you must open
the Cal Set with OpenCal Set. If the Cal Set is not open, this method
returns E_NA_Cal Set_ACCESS_DENIED.
Note: This method exists on a non-default interface. If you cannot access
this method, use the GetStandard Method on ICal Set

 VB Syntax interface.getStandardComplex class, rcv, src, numPts, real(), imag()

Variable (Type) - Description
interface An ICalData pointer to the Calibrator object or

 An ICalData2 pointer to the Cal Set object(preferrred)
class (enum NACalClass) Standard to be measured. Choose from:

1 - naClassA

2 - naClassB

3 - naClassC

4 - naClassD

5 - naClassE

141

6 - naReferenceRatioLine

7 - naReferenceRatioThru

SOLT Standards

1 - naSOLT_Open

2 - naSOLT_Short

3 - naSOLT_Load

4 - naSOLT_Thru

5 - naSOLT_Isolation

TRL Standards

1 - naTRL_Reflection

2 - naTRL_Line_Reflection

3 - naTRL_Line_Tracking

4 - naTRL_Thru

5 - naTRL_Isolation

rcv (long integer) - Receiver Port
src (long integer) - Source Port
numPts (long integer) - on input, max number of data points to return;

 on output: indicates the actual number of data points returned.
real() (single) - array to accept the real part of the calibration data. One-

dimensional for the number of data points.
imag() (single) - array to accept the imaginary part of the calibration data. One-

dimensional for the number of data points.
Return Type (single)
Default Not Applicable

Examples Dim numpts as long

 numpts = ActiveChannel.NumberOfPoints
 ReDim r(numpts) ’ real part
 ReDim i(numpts) ’ imaginary part
 Dim Cal Set as Cal Set
 set Cal Set = pna.GetCalManager.GetCal SetByGUID(txtGUID)
 Dim sData As ICalData2
 Set sData = Cal Set
 sdata.getStandardComplex naSOLT_Open, 1, 1, numpts, r(0), i(0)

C++ Syntax HRESULT getStandardComplex(tagNACalClass stdclass, long

ReceivePort, long SourcePort, long* pNumValues, float* pReal, float*
pImag)

Interface ICalData2

142

Write-only About Accessing Data

PutErrorTermComplex Method

Description Puts error term data into the error-correction data buffer. Learn more about
reading and writing Cal data using COM

 VB Syntax data.putErrorTermComplex term, rcv, src, numPts, real(), imag()

Variable (Type) - Description
data An ICalData pointer to the Calibrator object
term (enum NAErrorTerm) - The error term to be retrieved. Choose from:

• naErrorTerm_Directivity_Isolation
• naErrorTerm_Match

naErrorTerm_Tracking
rcv (long integer) - Receiver Port
src (long integer) - Source Port
numPts (long integer) - number of data points in the array
real() (single) - array containing the real part of the calibration data. One-

dimensional: the number of data points.
imag() (single) - array containing the imaginary part of the calibration data. One-

dimensional: the number of data points.

To get this Specify these parameters:
Error Term term rcv src
Fwd Directivity naET_Directivity Isolation 1 1
Rev Directivity naET_Directivity Isolation 2 2
Fwd Isolation naET_Directivity Isolation 2 1
Rev Isolation naET_Directivity Isolation 1 2
Fwd Source Match naErrorTerm_Match 1 1
Rev Source Match naErrorTerm_Match 2 2
Fwd Load Match naErrorTerm_Match 2 1
Rev Load Match naErrorTerm_Match 1 2
Fwd Reflection Tracking naErrorTerm_Tracking 1 1
Rev Reflection Tracking naErrorTerm_Tracking 2 2
Fwd Trans Tracking naErrorTerm_Tracking 2 1
Rev Trans Tracking naErrorTerm_Tracking 1 2
Fwd Trans Tracking naErrorTerm_Tracking 2 1

Return Type Not Applicable
Default Not Applicable

Examples Dim eData As ICalData

 Set eData = chan.Calibrator
 eData.putErrorTermComplex naErrorTerm_Directivity_Isolation, 1, 1, 201,
rel(0), img(0)

C++ Syntax HRESULT putErrorTermComplex(tagNAErrorTerm ETerm, long ReceivePort,

long SourcePort, long* pNumValues, float* pReal, float* pImag)
Interface ICalData

143

Write-only About Cal Sets

PutStandardComplex Method

Description Puts standards acquisition data into the Cal Set. Learn more about
reading and writing Cal data using COM
Before calling this method you must open the Cal Set with OpenCal Set.
If the Cal Set is not open, this method returns E_NA_Cal
Set_ACCESS_DENIED.

 VB Syntax interface.putStandardComplex class, rcv, src, numPts,real(),imag()

Variable (Type) - Description
interface A ICalData pointer to the Calibrator object or

 A ICalData2 pointer to the Cal Set object
class (enum NACalClass) Standard. Choose from:

1 - naClassA

2 - naClassB

3 - naClassC

4 - naClassD

5 - naClassE

6 - naReferenceRatioLine

7 - naReferenceRatioThru

SOLT Standards

1 - naSOLT_Open

2 - naSOLT_Short

3 - naSOLT_Load

4 - naSOLT_Thru

5 - naSOLT_Isolation

TRL Standards

1 - naTRL_Reflection

2 - naTRL_Line_Reflection

3 - naTRL_Line_Tracking

4 - naTRL_Thru

5 - naTRL_Isolation

144

rcv (long integer) - Receiver Port
src (long integer) - Source Port
numPts (long integer) - number of data points in the arrays being sent.
real() (single) - one-dimensional array containing the real part of the

acquisition data. (0:points-1)
imag() (single) - one-dimensional array containing the imaginary part of the

acquisition data. (0:points-1)
Return Type Not Applicable
Default Not Applicable

Examples Dim sdata As ICalData2

 Set sdata = calmanager.CreateCal Set(1)
 sdata.putStandardComplex naSOLT_Open, 1, 1, numpts, rel(0), img(0)

C++ Syntax HRESULT putStandardComplex(tagNACalClass stdclass, long

ReceivePort, long SourcePort, long lNumValues, float* pReal, float*
pImag)

Interface ICalData
 ICal Set

ICalData2 Interface

ICalData2 Interface

Description
Use this interface as an alternative to the ICalSet Interface when transmitting data to and from
the Cal Set to avoid using variants.
Learn about reading and writing Calibration data.

Methods Description
getErrorTermComplex Retrieves complex error term data from the error correction buffer
getStandardComplex Retrieves complex data from the error correction buffer
putErrorTermComplex Writes complex error term data into the error correction buffer
putStandardComplex Writes complex data to the error correction buffer
Properties Description
None

Read-only About Cal Sets

GetErrorTermComplex Method

Description Queries error term data from the Cal Set. The data is in complex

pairs. Learn more about reading and writing Cal Data using COM.
Note: This method exists on a non-default interface. If you cannot
access this method, use the GetErrorTerm Method on ICal Set.

 VB Syntax eData.GetErrorTermComplex setID, term, rcv, src, numPts, real(), imag()

145

Variable (Type) - Description
eData An ICalData2 pointer to the Cal Set object
setID (long integer) – specifies which error term set to read data from. (0

is the master set of eterms.)
To get data from interpolated error terms, you must first determine
if an interpolated set exists by calling the GetCalSetUsageInfo
method. If it returns a number greater than 0 for the error term set
ID, then the channel is currently using interpolated arrays. In this
case, you can read from either the interpolated array (setID > 0) or
the master array (setID = 0).
Note::Interpolated error terms are destroyed when no longer being
used.

term (enum NAErrorTerm2) - The error term to be retrieved. Choose
from:
0 - naET_Directivity
1 - naET_SourceMatch
2 - naET_ReflectionTracking
3 - naET_TransmissionTracking
4 - naET_LoadMatch
5 - naET_Isolation

rcv (long integer) - Receiver Port
src (long integer) - Source Port
numPts (long integer) - on input, max number of data points to return;

 on output: indicates the actual number of data points returned.
real() (single) - array to accept the real part of the error-term. One-

dimensional for the number of data points.
imag() (single) - array to accept the imaginary part of the error-term. One-

dimensional for the number of data points.

Return Type Single
Default Not Applicable

Examples dim numpts as long

 numpts = ActiveChannel.NumberOfPoints
 ReDim r(numpts) ’ real part
 ReDim i(numpts) ’ imaginary part
 Dim CalSet as CalSet
 set CalSet = pna.GetCalManager.GetCal SetByGUID(txtGUID)
 Dim eData As ICalData2
 Set eData = CalSet
 eData.getErrorTermComplex 0, naET_LoadMatch, 1, 2, numpts,
r(0),i (0)

C++ Syntax HRESULT getErrorTermComplex(long setID, tagNAErrorTerm2

ETerm, long ReceivePort, long SourcePort, long* pNumValues,
float* pReal, float* pImag)

Interface ICalData2

146

Write-only About Cal Sets

PutErrorTermComplex Method

Description Puts error term data into the Cal Set. Learn more about reading and

writing Cal data using COM
Before calling this method you must open the Cal Set with OpenCal Set.
If the Cal Set is not open, this method returns E_NA_Cal
Set_ACCESS_DENIED.

 VB Syntax data.putErrorTermComplex term, rcv, src, numPts, real(), imag()

Variable (Type) - Description
data An ICalData2 pointer to the Cal Set object
term (enum NAErrorTerm2) - The error term to be written. Choose from:

0 - naET_Directivity
1 - naET_SourceMatch
2 - naET_ReflectionTracking
3 - naET_TransmissionTracking
4 - naET_LoadMatch
5 - naET_Isolation

rcv (long integer) - Receiver Port
src (long integer) - Source Port
numPts (long integer) - number of data points in the array
real() (single) - array containing the real part of the calibration data. One-

dimensional: the number of data points.
imag() (single) - array containing the imaginary part of the calibration data.

One-dimensional: the number of data points.

Return Type Not Applicable
Default Not Applicable

Examples Dim eData As ICalData2

 Set eData = app.GetCalManager.Cal Sets.Item(1)
 eData.putErrorTermComplex naET_LoadMatch, 1, 2, numpts, rel(0),
img(0)

C++ Syntax HRESULT putErrorTermComplex(tagNAErrorTerm2 ETerm, long

ReceivePort, long SourcePort, long* pNumValues, float* pReal, float*
pImag)

Interface ICalData2

ICalData3 Interface
ICalData3_Interface

Description
This interface extends the CalData Interface. Use it transmit error term and standards data to
and from the Cal Set.
Learn about reading and writing Calibration data.

Methods Description
GetErrorTermComplexByStr Queries the calset for specific error term data.

147

ing
PutErrorTermComplexByStr
ing

Writes data for a specific error term to the calset.

GetStandardComplexByStri
ng

Queries the calset for specific standard data.

PutStandardComplexByStri
ng

Writes data for a specific standard to the calset.

Properties Description
None

HWauxIO Object

HWAuxIO Object

Description
Contains the methods and properties that control the rear panel Auxiliary Input / Output
connector.
See a Pinout of the Aux IO Connector

Method Description
get_InputVoltage Reads the ADC input voltage
get_OutputVoltage Reads voltages on the DAC/Analog Output 1 and Output 2
get_OutputVoltageMod
e

Reads mode setting for either DAC output.

get_PortCData Reads a 4-bit value from Port C
put_OutputVoltage Writes voltages to the DAC/Analog Output 1 and Output 2
put_OutputVoltageMod
e

Writes mode setting for either DAC output.

put_PortCData Writes a 4-bit value to Port C
Property Description
FootSwitch Reads the Footswitch Input
FootswitchMode Determines the action that occurs when the footswitch is pressed.
PassFailLogic Sets and reads the logic of the PassFail line

Shared with the HWMaterialHandler Object
PassFailMode Sets and reads the mode of the PassFail line

Shared with the HWMaterialHandler Object
PassFailScope Sets and reads the scope of the PassFail line

Shared with the HWMaterialHandler Object
PortCLogic Sets and reads the logic mode of Port C
PortCMode Sets and reads the mode of Port C
SweepEndMode Sets and reads the event that causes the Sweep End line to go to a false

state.
Shared with the HWMaterialHandler Object

Read-only About the Aux I/O Connector

get_InputVoltage Method

Description Reads the ADC input voltage from Analog IN (pin 14) of the AUX IO

148

connector
 VB Syntax volts = AuxIO.get_InputVoltage

Variable (Type) - Description
volts (double) - variable to store the return value
AuxIO (object) - A Hardware Auxiliary Input / Output object
Return Type Double
Default 0

Examples Dim aux as HWAuxIO

Set aux = PNA.getAuxIO
 volts = aux.get_InputVoltage ’read voltage on Analog In (pin 14)

C++ Syntax HRESULT get_InputVoltage (double* Voltage);
Interface HWAuxIO

Read-only About the Aux I/O Connector

get_OutputVoltage Method

Description Reads voltages on the DAC/Analog Output 1 and Output 2 (pins 2 and 3

of the Aux I/O connector)
 VB Syntax volts = AuxIO.get_OutputVoltage (output)

Variable (Type) - Description
volts (double) - variable to store the return value
AuxIO (object) - A Hardware Auxiliary Input / Output object
output (variant) Number of the output DAC to read voltage from. Choose from:

1 - Output DAC 1 -(pin 3)
2 - Output DAC 2 -(pin 2)

Return Type Double
Default

Examples Dim aux as HWAuxIO

Set aux = PNA.getAuxIO
volts = aux.get_OutputVoltage(1) ’read voltage from Analog Out 1 (pin3)

C++ Syntax HRESULT get_OutputVoltage(VARIANT Output, double* Voltage);
Interface IHWAuxIO

Read-only

get OutputVoltageMode Method

Description This command sets the mode of the selected "Analog Out" line on the

Auxiliary IO. The modes give the user the option to have the requested
voltage applied immediately or not until the sweep is done.Also see the
description for "Analog Out 1, 2" in the Auxiliary IO connector
documentation.

 VB Syntax vOutput2Mode = auxIo.get_OutputVoltageMode 2

Variable (Type) - Description

(enum NAOutputVoltageMode)
naWaitEOS - While in this mode any voltage changes sent to the
selected analog out will only get applied to the output between sweeps.

149

naNoWait - While in this mode any voltage changes sent to the selected
analog out will occur right away without waiting until the end of a sweep,
the voltage gets applied immediately.

Return Type NAOutputVoltageMode
Default naWaitEOS

Examples vOutput2Mode = auxIo.get_OutputVoltageMode 2 ’Read

C++ Syntax NAOutputVoltageMode *pVOutput1Mode; HRESULT hr = auxIo -

>get_FootSwitchMode(1, pVOutput1Mode); // Read
Interface IHWAuxIO

Read-only About the Aux I/O Connector

get_PortCData Method

Description Reads a 4-bit value from Port C of the Aux I/O connector (pins 22-25)

and the Material Handler IO (pins 21-24 Anritsu) - (pins 22-25 Avantest).
Note: These lines are connected to both the Handler IO and Aux IO in
the PNA.

 VB Syntax value = AuxIO.get_PortCData

Variable (Type) - Description
value (variant) - Variable to store the returned data
AuxIO (object) - A Hardware Auxiliary Input / Output object
Return Type Integer
Default None

Examples value = auxIo.get_PortCData ’Reading a value of 15 when in Positive

Logic indicates Port C lines C0, C1, C2, C3 are High. If in Negative Logic
they are Low.

C++ Syntax HRESULT get_PortCData(VARIANT* Data);
Interface IHWAuxIO

Write-only About the Aux I/O Connector

put_OutputVoltage Method

Description Writes voltages on the DAC/Analog Output 1 and Output 2 (pins 2 and 3

of the Aux I/O connector)
 VB Syntax AuxIO.put_OutputVoltage output, voltage

Variable (Type) - Description
AuxIO (object) - A Hardware Auxiliary Input / Output object
output (variant) Number of the output DAC to write voltage to. Choose from:

1 Output DAC 1 - (pin 2)
2 Output DAC 2 - (pin 3)

voltage (double) Voltage to write to the output DAC. Choose a voltage from -10
to 10

Return Type None

150

Default None

Examples HWAuxIO.put_OutputVoltage 1,9 ’set Analog Out1 to +9v

C++ Syntax HRESULT put_OutputVoltage (VARIANT Output, double Voltage);
Interface IHWAuxIO

Write-only

put_OutputVoltageMode Method

Description This command sets the mode of the selected "Analog Out" line on

the Auxiliary IO. The modes give the user the option to have the
requested voltage applied immediately or not until the sweep is
done.Also see the description for "Analog Out 1, 2" in the
Auxiliary IO connector documentation.

 VB Syntax auxIo.put_OutputVoltageMode 1, naNoWait

Variable (Type) - Description

(enum NAOutputVoltageMode)
naWaitEOS - While in this mode any voltage changes sent to the
selected analog out will only get applied to the output between
sweeps.
naNoWait - While in this mode any voltage changes sent to the
selected analog out will occur right away without waiting until the
end of a sweep, the voltage gets applied immediately.

Return Type NAOutputVoltageMode
Default naWaitEOS

Examples auxIo.put_OutputVoltageMode 1, naWaitEOS ’Write

auxIo.put_OutputVoltageMode 1, naNoWait ’Write

C++ Syntax NAOutputVoltageMode nuVOutput1Mode; nuVOutput1Mode =

naWaitEOS; HRESULT hr = auxIo ->put_OutputVoltageMode (
1, nuVOutput1Mode); // Write

Interface IHWAuxIO

Write-only About the Aux I/O Connector

put_PortCData Method

Description Writes a 4-bit value to Port C on the Aux I/O connector (pins 22-25) and

the Material Handler IO (pins 21-24 Anritsu) - (pins 22-25 Avantest).

151

Note: These lines are connected to both the Handler IO and Aux IO in
the PNA. Therefore, this command will affect both of these connectors in
the same way.

 VB Syntax AuxIO.put_PortCData num

Variable (Type) - Description
AuxIO (object) - A Hardware Auxiliary Input / Output object
num (variant) - 4 bit binary value. Choose from 0-15
Return Type None
Default None

Examples HWAuxIO.put_PortCData 15 ’If Positive Logic, Port C lines C0, C1, C2,

C3 go High. If Negative Logic, they go Low.

C++ Syntax HRESULT put_PortCData(VARIANT Data);
Interface IHWAuxIO

Read-only

FootSwitch Property

Description Reads the Footswitch Input (pin 20 of the AUX IO connector).
 VB Syntax value = AuxIO.Footswitch

Variable (Type) - Description
value (boolean) - Variable to store the returned value

False (0) -foot switch is released
True (1) - footswitch is depressed

AuxIO (object) - A Hardware Aux I/O object
Return Type Boolean
Default True (1)

Examples fs = aux.Footswitch

C++ Syntax HRESULT get_FootSwitch (VARIANT_BOOL* State);
Interface IHWAuxIO3

Write/Read About the Aux I/O Connector

FootswitchMode Property

Description Determines what occurs when the footswitch is pressed. For more
information see the FootSwitch In pin description in the Auxiliary IO
connector.

 VB Syntax AuxIo.FootSwitchMode = value

Variable (Type) - Description
value (enum NAFootSwitchMode)

0 - naIgnoreFootswitch - Footswitch presses are ignored.
1 - naSweepTrigger - Footswitch presses trigger a sweep. The PNA
must be in Manual Trigger Mode.
2 - naRecallNextState - Footswitch presses recall an instrument state.

152

When more than one state is available, then each footswitch press recalls
the next state, then starts over from the beginning. It is possible for a
recalled state to override the current mode. If the recalled state is IGNore,
then mode changes and additional footswitch presses are ignored.
3 - naRunMacro - Footswitch presses load and run a macro. When more
than one macro is available, then each footswitch press loads and runs
the next macro, then starts over from the beginning. It is possible for a
Macro to override the current mode. If the macro contains a Preset, then
the mode changes to the default setting IGNore and additional footswitch
presses are ignored.

AuxIO (object) - A Hardware Aux I/O object
Return Type NAFootSwitchMode
Default 0 - naIgnoreFootswitch

Examples auxIo.FootSwitchMode = naIgnoreFootSwitch ’Write

C++ Syntax HRESULT get_FootSwitchMode(NAFootSwitchMode *pFootSwitchMode

)
HRESULT put_FootSwitchMode(NAFootSwitchMode
newFootSwitchMode)

Interface IHWAuxIO3

Read/Write

PassFailLogic Property

Description Sets and reads the logic of the PassFail line on the HANDLER IO
connector (pin 33) and AUX IO connector (pin 12).
Note: This line is connected to both the Handler IO and Aux IO in the
PNA. Therefore, this command will affect both of these connectors in the
same way.

 VB Syntax object.PassFailLogic = value

Variable (Type) - Description
object (object) - An Aux I/O or Handler I/O object
value (enum as NARearPanelIOLogic) Choose from:

0 - naPositiveLogic - Causes the PassFail line to have positive logic
(high = pass, low = fail).
1 - naNegativeLogic - Causes the PassFail line to have negative logic
(high = fail, low = pass).

Return Type Long Integer
Default naPositiveLogic

Examples aux.PassFailLogic = naNegativeLogic ’Write

Text1.Text = aux.PassFailLogic ’Read

C++ Syntax HRESULT put_PassFailLogic (tagNARearPanelIOLogic Mode);

HRESULT get_PassFailLogic (tagNARearPanelIOLogic* Mode);
Interface IHWAuxIO

IHWMaterialHandlerIO

153

Read/Write

PassFailMode Property

Description Sets and reads the mode of the PassFail line on the HANDLER IO
connector (pin 33) and AUX IO connector (pin 12).
Note: This line is connected to both the Handler IO and Aux IO in the
PNA. Therefore, this command will affect both of these connectors in the
same way.

 VB Syntax object.PassFailMode = value

Variable (Type) - Description
object (object) - An Aux I/O or Handler I/O object
value (enum as NAPassFailMode).Choose from:

 0 - naDefaultPassNoWaitMode- the line stays in PASS state. When a
device fails, then the line goes to fail IMMEDIATELY.
1 - naDefaultPassWaitMode - the line stays in PASS state. When a
device fails, then the line goes to fail after the Sweep End line is
asserted.
2 - naDefaultFailWaitMode- the line stays in FAIL state. When a device
passes, then the line goes to PASS state after the Sweep End line is
asserted.

Return Type Long Integer
Default 0 - naDefaultPassNoWaitMode

Examples HWAuxIO.PassFailMode = naDefaultPassNoWaitMode ’Write

mode = HWAuxIO.PassFailMode ’Read

C++ Syntax HRESULT put_PassFailMode (tagNAPassFailMode Mode);

HRESULT get_PassFailMode (tagNAPassFailMode* Mode);
Interface IHWAuxIO

IHWMaterialHandlerIO

Read/Write

PassFailScope Property

Description Sets and reads the Scope of the PassFail line on the HANDLER IO
connector (pin 33) and AUX IO connector (pin 12).
Note: The PassFail line is connected to both the Handler IO and Aux IO
in the PNA. Therefore, this command will affect both of these connectors
in the same way.

 VB Syntax object.PassFailScope = value

Variable (Type) - Description
object (object) - An Aux I/O or Handler IO object
value (enum NAPassFailScope) Choose from:

0 - naChannelScope - The PassFail line returns to its default state
before sweeps on the next channel start. (A channel measurement may
require several sweeps.)
1 - naGlobalScope - The PassFail line returns to its default state before
the sweeps for the next triggerable channel start.
The default state of the PassFail line before a measurement occurs and
after a failure occurs is set by the PassFailMode property.

Return Type enum NAPassFailScope

154

Default 1 - naGlobalScope

Examples HWAuxIO.PassFailScope = naGlobalScope ’Write

scope = HWAuxIO.PassFailScope ’Read

C++ Syntax HRESULT put_PassFailScope (tagNAPassFailScope Scope);

HRESULT get_PassFailScope (tagNAPassFailScope* Scope);
Interface IHWAuxIO

IHWMaterialHandlerIO

Read/Write About the Aux I/O Connector

PortCLogic Property

Description Sets and reads the logic mode of Port C on the AUX IO connector and
the Handler IO connector.
Note: Port C lines are connected to both the Handler IO and Aux IO in
the PNA. Therefore, this command will affect both of these connectors in
the same way.

 VB Syntax AuxIO.PortCLogic = value

Variable (Type) - Description
AuxIO (object) - A Hardware Aux I/O object
value (Enum as NaRearPanelIOLogic) - Choose from:

0 - naPositiveLogic - The associated data line goes HIGH when writing
a 1 to a PortC bit.
1 - naNegativeLogic - The associated data line goes LOW when writing
a 1 to a PortC bit.
When Port C is in Output/Write mode, a change in logic causes the
output lines to change state immediately. For example, Low levels
change to High levels.
When Port C is in Input/Read mode, a change in logic will not cause the
lines to change, but data read from Port C will reflect the change in logic.

Return Type Enum
Default 1 - naNegativeLogic

Examples auxIO.PortCLogic = value ’Write

value = auxIo.PortCLogic ’Read

C++ Syntax HRESULT put_PortCLogic (tagNARearPanelIOLogic Mode);

HRESULT get_PortCLogic (tagNARearPanelIOLogic* Mode);
Interface IHWAuxIO

Read/Write About the Aux I/O Connector

PortCMode Property

Description Sets and reads whether Port C is setup for writing or reading data on the
AUX IO connector and the Handler IO connector.
Note: Port C lines are connected to both the Handler IO and Aux IO in

155

the PNA. Therefore, this command will affect both of these connectors in
the same way.

 VB Syntax AuxIO.PortCMode = value

Variable (Type) - Description
AuxIO (object) - A Hardware Aux I/O object
value (enum as NaPortMode) - Choose from:

0 - naInput - set the port for reading
1 - naOutput - set the port for writing

Return Type Enum as NaPortMode
Default 1 - naInput

Examples auxIo.get_PortCMode = naInput ’Write

value = auxIo.get_PortCMode ’Read

C++ Syntax HRESULT get_PortCMode(tagNAPortMode* pMode);

HRESULT put_PortCMode(tagNAPortMode pMode);
Interface IHWAuxIO

Read/Write

SweepEndMode Property

Description Sets and reads the event that will cause the Sweep End line to go to a
low state. The line will return to a high state after the appropriate
calculations are complete.
Note: This line is connected to the following pins on the HANDLER IO
connector and AUX IO connector in the PNA. Therefore, this command
will affect both of these connectors in the same way.

 VB Syntax object.SweepEndMode = value

Variable (Type) - Description
object (object) - A HandlerIO or AuxIO object
value (enum as NASweepEndMode) Choose from:

0 - naSweep - the line goes low when each sweep is complete
1 - naChannelSweep - the line goes low when all the sweeps for each
channel is complete.
2 - naGlobalSweep - the line goes low when all sweeps for all
triggerable channels are complete.

Return Type Long Integer
Default 0 - naSweep

Examples HWAuxIO.PassFailMode = naSweep ’Write

value = HWAuxIO.PassFailMode ’Read

C++ Syntax HRESULT put_SweepEndMode (tagNASweepEndMode Mode);

HRESULT get_SweepEndMode (tagNASweepEndMode* Mode);
Interface IHWAuxIO

IHWMaterialHandlerIO

IHWAuxIO2 Interface

156

IHWAuxIO2_Interface

Description
This interface extends the HWAuxIO interface. Use this interface to read and set the output
voltage mode for the specified output.

Methods Description
get_OutputVoltageMode Reads the state of the OutputVoltage Mode for the specified output.
put_OutputVoltageMode Sets the state of the OutputVoltage Mode for the specified output.
Properties Description
None

IHWAuxIO3
IHWAuxIO3 Interface

Description
This interface extends the HWAuxIO interface. This interface enables the analyzer to accept and
understand inputs from a footswitch connected to it.

Methods Description
None
Properties Description
FootSwitch Reads the Footswitch Input.

HWExternalTestSetIO Object
HWExternalTestSetIO Object

Description
Contains the methods and properties that control the rear panel External Test Set Input / Output
connector
Pinout for the External Test Set Connector

Method Description
ReadData Reads data and generates the appropriate timing signals
ReadRaw Reads data, but does NOT generate appropriate timing signals
WriteData Writes data and generates the appropriate timing signals
WriteRaw Writes data, but does NOT generate the appropriate timing signals
Property Description
Interrupt Returns the state of the Interrupt line
SweepHoldOff Returns the state of the Sweep Holdoff line

Read-only About the ExtTestSetIO connector

ReadData Method

Description Reads a 13-bit data word from the specified address. Data is read using

the AD0 through AD12 lines of the external test set connector. The

157

instrument generates the appropriate timing signals. It automatically
controls timing signals LDS, LAS and RLW to strobe the address, and
then read the data, from the external test set. See the timing diagram for
Address and Data I/O read.

 VB Syntax value = ExtIO.ReadData (address)

Variable (Type) - Description
value (variant) - Variable to store the returned data
ExtIO (object) - An ExternalTestSetIO object
address (variant) - address to read data from.
Return Type Variant
Default Not Applicable

Examples value = ExtIO.ReadData (15)

C++ Syntax HRESULT ReadData (VARIANT Address, VARIANT* Data);
Interface IHWExternaTestSetIO

Read-only About the ExtTestSetIO connector

ReadRaw Method

Description Reads a 16-bit value from the external test set. The 16-bit value is comprised

of lines AD0 - AD12, Sweep Holdoff In and Interrupt In (inverted).
When this command is used the analyzer does NOT generate the appropriate
timing signals; it simply reads the lines. The user needs to first use the
WriteRaw method to do the initial setup. The RLW line (pin25) must be set to
the appropriate level in order to read the test set connected.
Below is the format of data that is read with ReadRaw:

Pin Bit Signal name
22 0 AD0*
23 1 AD1*
11 2 AD2*
10 3 AD3*
9 4 AD4*
21 5 AD5*
20 6 AD6*
19 7 AD7*
6 8 AD8*
5 9 AD9*
4 10 AD10*
17 11 AD11*
3 12 AD12*
2 13 Sweep Holdoff In
13 14 Interrupt In (inverted internally)
na 15 Always Zero, grounded internally

*These lines are dependent on the state of RLW (pin25).

158

 Writing a 0(low) to RLW will set lines AD0-AD12 to write mode.
 Writing a 1(high) to RLW will set lines AD0-AD12 to read mode.

 VB Syntax value = ExtIO.ReadRaw (address)

Variable (Type) - Description
value (variant) - Variable to store the returned data
ExtIO (object) - An External IO object
address (variant) - Address to read data from
Return Type Real
Default Not Applicable

Examples value = ExtIO.ReadRaw (address)

C++ Syntax HRESULT ReadRaw(VARIANT* Input);
Interface IHWExternalTestSetIO

Write-only About the ExtTestSetIO connector

WriteData Method

Description Writes a 13-bit value to the specified address using the AD0 through

AD12 lines of the external test set connector. The instrument generates
the appropriate timing signals. It automatically controls timing signals
LDS, LAS and RLW to strobe the address, then the data, to the external
test set. See the timing diagram for Address and Data I/O read.

 VB Syntax ExtIO.ReadData (address) = value

Variable (Type) - Description
ExtIO (object) - An External IO object
address (variant) - address to be written to.
value (variant) - 13-bit word to write
Return Type Not Applicable
Default Not Applicable

Examples ExtIO.WriteData (15) = 12

C++ Syntax HRESULT WriteData(VARIANT Address, VARIANT Data);
Interface IHWExternaTestSetIO

Write-only About the ExtTestSetIO connector

WriteRaw Method

Description Writes a 16-bit value to the external test set connector lines AD0 - AD12, RLW, LAS

and LDS. The analyzer does NOT generate the appropriate timing signals. The user
has control of all 16 lines using this write method.

Note: When RLW (pin25) is set to 1 (high) it causes lines AD0 - AD12 to float. It

159

disables their output latches and sets the hardware for reading. LDS and LAS are not
affected by this behavior.

Below is the format of data that is written with WriteRaw:
* This Output will float if RLW (bit-13) is set high

Pin Bit Signal name
22 0 AD0*
23 1 AD1*
11 2 AD2*
10 3 AD3*
9 4 AD4*
21 5 AD5*
20 6 AD6*
19 7 AD7*
6 8 AD8*
5 9 AD9*
4 10 AD10*
17 11 AD11*
3 12 AD12*
25 13 RLW
24 14 LDS
8 15 LAS

 VB Syntax ExtIO.WriteRaw value

Variable (Type) - Description
ExtIO (object) - An External IO object
value (variant) - Data to be written
Return
Type

Not Applicable

Default Not Applicable

Examples ExtIO.WriteRaw 12

C++ Syntax HRESULT WriteRaw(VARIANT Output);
Interface IHWExternalTestSetIO

Read-only About the ExtTestSetIO connector

Interrupt Property

Description Reads the boolean that represents the state of the Interrupt In line (pin
13) on the external test set connector.

 VB Syntax value = ExtIO.Interrupt

Variable (Type) - Description

160

value (boolean) - Variable to store the returned data
ExtIO (object) - An ExternalTestSetIO object
Return Type Boolean

False (0) - indicates the line is being held at a TTL High
True (1) - indicates the line is being held at a TTL Low

Default Not Applicable

Examples value = ExtIO.Interrupt

C++ Syntax HRESULT get_Interrupt(VARIANT_BOOL* bValue);
Interface IHWExternalTestSetIO

Read-only About the ExtTestSetIO connector

SweepHoldOff Property

Description Returns a boolean that represents the state of SweepHoldoff line (pin2)

of the External Test Set connector.
 VB Syntax value = ExtIO.SweepHoldOff

Variable (Type) - Description
value (boolean) - Variable to store the returned data
ExtIO (object) - An External IO object
Return Type Boolean

False (0) - indicates the line is being held at a TTL Low
True (1) - indicates the line is being held at a TTL High

Default Not Applicable

Examples value = ExtIO.SweepHoldOff

C++ Syntax HRESULT get_SweepHoldOff(VARIANT_BOOL* bValue);
Interface IHWExternaTestSetIO

HWMaterialHandlerIO Object

HWMaterialHandlerIO Object

Description
Contains the methods and properties that control the rear panel Material Handler Input / Output
connector See the Pinout for the Material HandlerIO Connector

Method Description
get_Input1 Reads a hardware latch that captures low to high transition on Input1
get_Output Returns the last value written to the selected output pin.
get_Port Returns the value from the specified "readable" port.
put_Output Writes a TTL HI or TTL Low to output pins 3 or 4.

161

put_Port Writes a value to the specified port.
Property Description
PassFailLogic Sets and reads the logic of the PassFail line

Shared with the HWAuxIO Object
PassFailMode Sets and reads the mode for the PassFail line

Shared with the HWAuxIO Object
PassFailScope Sets and reads the scope for the PassFail line

Shared with the HWAuxIO Object
PortLogic Sets and returns the logic mode of data ports A-H
PortMode Sets and returns whether Port C or Port D is used for writing or reading

data
SweepEndMode Sets and reads the event that cause the Sweep End line to go to a low

state.
Shared with the HWAuxIO Object

Read-only About the Handler IO Connector

get_Input1 Method

Description Reads a hardware latch that captures low to high transition on Input1 of

the Material Handler IO. Reading the latch causes it to reset and is ready
for the next transition. The hardware latch is only capable of capturing
one transition per query. Additional transitions are ignored until after the
next query.
Momentarily grounding or driving Input1 low then high causes a transition
to be detected and latched.

 VB Syntax inp1 = handlerIo.get_Input1

Variable (Type) - Description
inp1 (variant) - A variable to store the return value
handlerIo (object) - A HandlerIO object
Return Type Variant -

1 - a low to high transition occurred at Input1 since the last time it was
queried.
0 - no low to high transition occurred.

Default 0

Examples input1 = handlerIo.get_Input1 ’Read

C++ Syntax HRESULT get_Input1 (VARIANT* Data);
Interface IHWMaterialHandlerIO

Read-only About the Handler IO Connector

get_Output Method

Description Returns the last value written to the selected output pin. Data is written

using put_Output Method
 VB Syntax data = handlerIo.get_Output (pin)

162

Variable (Type) - Description
data (variant) - A variable to store the return value. The returned value will be

one of the following:
0 - TTL Low
1 - TTL High

handlerIo (object) - A HandlerIO object
pin (enum as NAMatHandlerOutput) - output pin to read value from.

Choose from:
naOutput1 (0)
 naOutput1User (1)
 naOutput2 (2)
 naOutput2User (3)

Return Type Variant
Default Not Applicable

Examples data = handlerIo.get_Output(naOutput1)

C++ Syntax HRESULT get_Output (tagNAMatHandlerOutput Output, VARIANT*

Data);
Interface IHWMaterialHandlerIO

Read-only About the Handler IO Connector

get_Port Method

Description Returns the value from the specified "readable" port.
 VB Syntax data = handlerIo.get_Port (port)

Variable (Type) - Description
data (variant) - A variable to store the return value. The following table shows

what the returned data represents:
Port MSB...LSB

 8...0
C C3...C0
D D3...D0
E D3...D0 + C3...C0

handlerIo (object) - A HandlerIO object
port (enum as NAMatHandlerPort) - port to get data from. Choose from:

naPortC - (2)
naPortD - (3)
naPortE - (4)
Note: Reading data from the Write-only ports (A,B,F,G,H) will return an
error.
 Ports C and D must be put in Read mode before reading from C, D, or E
using PortMode Property.

Return Type Variant
Default 0

Examples data = handlerIo.get_Port(naPortC)

C++ Syntax HRESULT get_Port (tagNAMatHandlerPort Port, VARIANT* Data);

163

Interface IHWMaterialHandlerIO

Write-only About the Handler IO Connector

put_Output Method

Description Writes a TTL HI or TTL Low to output pins 3 or 4 of the Material Handler

IO connector.
Each pin also has a latched output which is written to with USER. With
the latched (USER) outputs, the value is not applied to the associated pin
until a positive edge is detected at INPUT1 (pin 2).

 VB Syntax handlerIo.put_Output (pin) = value

Variable (Type) - Description
handlerIo (object) - A HandlerIO object
pin (enum as NAMatHandlerOutput) - pin to write data to. Choose from:

naOutput1 - (0) - pin3
 naOutput1User (1) - pin3 latched (applied to pin 3 on positive edge of
Input1-pin2)
 naOutput2 (2) - pin4
 naOutput2User (3) - pin4 latched (applied to pin 4 on positive edge of
Input1-pin2)

value (Variant) Value to write to the selected pin. Choose from
0 - TTL LOW
1 - TTL HIGH

Return Type Not Applicable
Default 0

Examples handlerIo.put Output(naOutput1)= 1

C++ Syntax HRESULT put_Output (tagNAMatHandlerOutput Output, VARIANT Data

);
Interface IHWMaterialHandlerIO

Write-only About the Handler IO Connector

put Port Method

Description Writes a value to the specified port. Use the get_Port Method to read the settings

from the "readable" ports (C, D, E).
 VB Syntax handlerIo.put_Port (port) = value

Variable (Type) - Description
handlerIo (object) - A HandlerIO object
port (enum as NAMatHandlerPort) - port to put data into. Choose from:

naPortA - (0)
naPortB - (1)
naPortC - (2)
naPortD - (3)
naPortE - (4)
naPortF - (5)
naPortG - (6)

164

naPortH - (7)
value The number of the data bits to set. The following table shows what the value

represents:
Note: When writing to port G, port C must be set to output mode
 When writing to port H, both port C and port D must be set to output mode. Use Port
Mode Property

Port Max
allowable
<num>

MSB...LSB
 23...0

A 255 A7...A0 Write-only
B 255 B7...B0 Write-only
C 15 C3...C0 Read-Write
D 15 D3...D0 Read-Write
E 255 D3...D0 + C3...C0 Read-Write
F 65535 B7...B0 + A7...A0 Write-only
G 1048575 C3...C0 + B7...B0 + A7...A0 Write-only
H 16777215 D3...D0 + C3...C0 + B7...B0 + A7...A0 Write-only

Return
Type

Not Applicable

Default Not Applicable

Examples handlerIo.put Port(naPortB)= 15

C++ Syntax HRESULT put_Port (tagNAMatHandlerPort Port, VARIANT Data);
Interface IHWMaterialHandlerIO

Read/Write About the Handler I/O Connector

PortLogic Property

Description Sets and returns the logic mode of data ports A-H on the HandlerIO
connector. Port C of the Handler IO is connected internally to the Port C
of the Aux IO connector. Therefore, it will have the same logic mode.

 VB Syntax handler.PortLogic = value

Variable (Type) - Description
handler (object) - A HandlerI/O object
value (enum as NaRearPanelIOLogic) - Choose from:

0 - naPositiveLogic - When a value of one is written, the associated line
goes High
1 - naNegativeLogic - When a value of one is written, the associated line
goes Low
For ports that are in output (write) mode, a change in logic causes the
output lines to change state immediately. For example, Low levels
change immediately to High levels.
For ports that are in input (read) mode (C,D,E only), a change in logic will
be reflected when data is read from that port. For example, if a line read
0, the next read after a logic change will read 1.

Return Type Long Integer
Default 1 - naNegativeLogic

Examples handler.PortLogic = value ’Write

165

value = handler.PortLogic ’Read

C++ Syntax HRESULT put_PortLogic(tagNARearPanelIOLogic Mode);

HRESULT get_PortLogic(tagNARearPanelIOLogic* Mode);
Interface IHWMaterialHandlerIO

Read/Write About the Handler I/O Connector

PortMode Property

Description Sets and returns whether Port C or Port D is used for writing or reading
data on the Handler IO connector. The Handler IO Port C is connected
internally to the Port C of the Aux IO connector. Therefore, the Aux IO
connector will have the same input/output mode.

 VB Syntax handler.PortMode (port) = value

Variable (Type) - Description
handler (object) - A Handler I/O object
port (enum as NAMatHandlerPort) Port to be changed. Choose from:

2 -naPortC
3- naPortD

value (enum as NaPortMode) - Choose from:
0 - naInput - set the port for reading
1 - naOutput - set the port for writing

Return Type Long Integer
Default 1 - naInput

Examples handler.PortMode(naPortC) = naInput ’Write

value = handler.PortMode(naPortD) ’Read

C++ Syntax HRESULT put_PortMode (tagNAMatHandlerPort Port, tagNAPortMode

Mode);
HRESULT get_PortMode (tagNAMatHandlerPort Port, tagNAPortMode*
Mode);

Interface IHWMaterialHandlerIO

IArrayTransfer Interface

IArrayTransfer Interface

Description
Contains methods for putting data in and getting data out of the analyzer using typed data. This
interface transfers data more efficiently than the default IMeasurement Interface.

Method Description
getComplex Retrieves real and imaginary data from the specified buffer.
getNAComplex Retrieves typed NAComplex data from the specified buffer.
getPairedData Retrieves magnitude and phase data pairs from the specified buffer.
getScalar Retrieves scalar data from the specified buffer.
putComplex Puts real and imaginary data into the specified buffer.

166

putNAComplex Puts typed NAComplex data into the specified buffer.
putScalar Puts scalar data into the measurement result buffer.
Property Description
None

Read-only Data Access Map

GetComplex Method

Description Retrieves complex data from the specified location.
 See also getNAComplex , getData , and getPairedData Methods

 VB Syntax measData.getComplex location, numPts, real(), imag()

Variable (Type) - Description
measData An IArrayTransfer interface which supports the Measurement object
location (enum NADataStore - IArrayTransfer) - Where the data you want is

residing. Choose from:
1 - naCorrectedData
 2 - naMeasResult
 3 - naRawMemory
 4 - naMemoryResult
 5 - naDivisor
See the Data Access Map

numPts (long integer) - Number of data points requested
 [out] - specifies number of data elements returned
 [in] - specifies the data being requested or the capacity of the arrays

real (single) - Array to store the real values
imag (single) - Array to store the imaginary values
Return Type Single
Default Not Applicable

Examples Dim real(201) AS Single

 Dim imag(201) AS Single
 Dim pts as Integer
 Dim measData As IArrayTransfer
 Set measData = app.ActiveMeasurement
 measData.getComplex naCorrectedData, pts, real(0), imag(0)

C++ Syntax IArrayTransfer - HRESULT getComplex(tagNADataStore DataStore,

long* pNumValues, float* pReal, float* pImag)
Interface IArrayTransfer

Read-only Data Access Map

GetNAComplex Method

Description Retrieves complex data from the specified location.
 See also getComplex and getData Method.

 VB Syntax measData.getNAComplex location, numPts, data

167

Variable (Type) - Description
measData An IArrayTransfer interface which supports the Measurement object
location (enum NADataStore) - Where the data you want is residing. Choose

from:
0 - naRawData
 1 - naCorrectedData
 2 - naMeasResult
 3 - naRawMemory
 4 - naMemoryResult
 5 - naDivisor
See the Data Access Map

numPts (long integer) - Number of data points requested
 [out] - specifies number of data elements returned
 [in] - specifies the data being requested or the capacity of the dComplex
array

data (NAComplex) - A one-dimensional array of NaComplex to store the data.
Return Type NAComplex
Default Not Applicable

Examples Dim dComplex(201) AS NaComplex

 Dim measData As IArrayTransfer
 Dim pts as Long
 Set measData = app.ActiveMeasurement
 measData.getNAComplex naCorrectedData, pts, dComplex(0)

Notes The data is stored as Real and Imaginary (Re and Im) members of the
NaComplex user defined type. You can access each number individually
by iterating through the array.
For i = 0 to NumPts-1
 dReal (i) = dcomplex (i).Re
 dImag (i) = dcomplex (i).Im
 Next i

C++ Syntax HRESULT getNAComplex(tagNADataStore DataStore, long*

pNumValues, TsComplex* pComplex)
Interface IArrayTransfer

Read-only Data Access Map

GetPairedData Method

Description Retrieves pairs of data from the specified location.
Note: This method exists on a non-default interface. If you cannot access
this method, use the Get Data Method on IMeasurement.

 VB Syntax measData.getPairedData location, format, numPts, d1, d2

Variable (Type) - Description
measData An IArrayTransfer interface which supports the Measurement object
location (enum NADataStore) - Where the data you want is residing. Choose

from:
0 - naRawData
 1 - naCorrectedData
 2 - naMeasResult
 3 - naRawMemory
 4 - naMemoryResult

168

 5 - naDivisor
See the Data Access Map

format (enum NAPairedDataFormat) - Format in which you would like the
Paired data. Choose from:

• naLinMagPhase - Linear magnitude and phase
• naLogMagPhase - Log magnitude and phase
• naRealImaginary - Real and Imaginary

Note: Selecting naRealImaginary format is the same as using the
getComplex method

numPts (long integer) - Number of data points requested
 [out] - specifies number of data elements returned
 [in] - specifies the data being requested or the capacity of the dPaired
array

d1 (single) - Array to store the magnitude / real values
d2 (single) - Array to store the phase / imaginary values
Return Type Two Single arrays
Default Not Applicable

Examples Dim logm() As Single

 Dim phase() As Single
 Public measData As IArrayTransfer
 Set measData = app.ActiveMeasurement
 Dim numpts As Long
 numPoints = app.ActiveChannel.NumberOfPoints
 ReDim logm(numPoints)
 ReDim phase(numPoints)

 measData.getPairedData naCorrectedData, naLogMagPhase,
numPoints, logm(0), phase(0)

 Print values(0), values(1)

C++ Syntax HRESULT getPairedData(tagNADataStore DataStore,

tagNAPairedDataFormat PairFormat, long* pNumValues, float* pReal,
float* pImag)

Interface IArrayTransfer

Read-only Data Access Map

GetScalar Method

Description Retrieves scalar data from the specified locations.

Note: This method exists on a non-default interface. If you cannot access
this method, use the Get Data Method on IMeasurement.

Note: You can NOT use this command to get complex data.
 VB Syntax measData.getScalar location, format, numPts, data

Variable (Type) - Description
measData An IArrayTransfer interface which supports the Measurement object
location (enum NADataStore) - Where the data you want is residing. Choose

from:
0 - naRawData
 1 - naCorrectedData
 2 - naMeasResult

169

 3 - naRawMemory
 4 - naMemoryResult
 5 - naDivisor
See the Data Access Map

format (enum DataFormat) - Scalar format in which you would like the data.
Choose from:

• naDataFormat_Delay
• naDataFormat_Imaginary
• naDataFormat_LinMag
• naDataFormat_LogMag
• naDataFormat_Phase
• naDataFormat_Real

naDataFormat_SWR
numPts (long integer) - Number of data points requested

 [out] - specifies number of data elements returned
 [in] - specifies the data being requested or the capacity of the dScalar
array

data (single) - Array to store the scalar data.
Return Type Single
Default Not Applicable

Examples Dim dScalar() As Single

 Dim measData As IArrayTransfer
 Set measData = app.ActiveMeasurement
 Dim numpts as Long
 numpts = app.ActiveChannel.NumberOfPoints
 ReDim dScalar(numPoints)

 measData.getScalar naCorrectedData, naDataFormat_LogMag, numpts,
dScalar(0)
 Print dScalar(0), dScalar(1)

C++ Syntax HRESULT getScalar(tagNADataStore DataStore, tagDataFormat

DataFormat, long* pNumValues, float* pVals)
Interface IArrayTransfer

Write-only Data Access Map

PutComplex Method

Description Puts real and imaginary data into the specified location. This method
forces the channel into Hold mode to prevent the input data from being
overwritten. Learn more about reading and writing Cal Data using COM.
Data put in the raw data store will be re-processed whenever a change
is made to the measurement attributes such as format or correction.
Data put in the measurement results store will be overwritten by any
measurement attribute changes.
See also putNAComplex

 VB Syntax measData.putComplex location, numPts, real(), imag(), [format]

Variable (Type) - Description
measData An IArrayTransfer interface which supports the Measurement object
location (enum NADataStore) Where the Data will be put. Choose from:

 0 - naRawData

170

 1 - naCorrectedData
 2 - naMeasResult
 3 - naRawMemory
 4 - naMemoryResult
 5 - naDivisor
See the Data Access Map

numPts (long integer) - Number of data points in the channel
real() (single) - Array containing real data values
imag() (single) -Array containing imaginary data values
format (enum NADataFormat) optional argument - display format of the real

and imaginary data. Only used if destination is naMeasResult or
naMemoryResult buffer. If unspecified, data is assumed to be in
naDataFormat_Polar

• naDataFormat_Delay
• naDataFormat_Imaginary
• naDataFormat_LinMag
• naDataFormat_LogMag
• naDataFormat_Phase
• naDataFormat_Real
• naDataFormat_SWR
• naDataFormat_Smith

naDataFormat_Polar
Return Type Not Applicable
Default Not Applicable

Examples Dim measData As IArrayTransfer

 Set measData = app.ActiveMeasurement

 measData.putComplex naMemoryResult, 201,
real(0),imag(0),naDataFormat_SWR

C++ Syntax HRESULT putComplex(tagNADataStore DataStore, long lNumValues,

float* pReal, float* pImag, tagDataFormat displayFormat)
Interface IArrayTransfer

Write-only Data Accessing Map

PutNAComplex Method

Description Puts complex data into the specified location. This method forces the
channel into Hold mode to prevent the input data from being overwritten.
The data is processed and displayed.
Data put in the naRawData store will be re-processed whenever a
change is made to the measurement attributes such as format or
correction.
Data put in the naMeasResult store will be overwritten by any
measurement attribute changes (such as moving a marker).
Note: This method uses NAComplex which is a user-defined data type. If
you cannot or prefer not to use this data type, use the putComplex
method.

 VB Syntax measData.putNAComplex location, numPts, data, [format]

Variable (Type) - Description
measData An IArrayTransfer interface which supports the Measurement object

171

location (enum NADataStore) Where the Data will be put. Choose from:
 0 - naRawData
 1 - naCorrectedData
 2 - naMeasResult
 3 - naRawMemory
 4 - naMemoryResult
 5 - naDivisor
See the Data Access Map

numPts (long integer) - Number of data points in the channel
data (NAComplex) - A one-dimensional array of Complex data matching the

number of points in the current measurement.
format (enum NADisplayFormat) - Optional argument. Format of the data. If

unspecified, naDataFormat_Polar is assumed. Only used when the
destination store is naMeasResult or naMemoryResult.

Return Type Not Applicable
Default Not Applicable

Examples Dim measData As IArrayTransfer

 Set measData = app.ActiveMeasurement

 measData.putNAComplex naMemoryResult, 201, dRawComplex(0)

C++ Syntax HRESULT putNAComplex(tagNADataStore DataStore, long lNumValues,

TsComplex* pArrayOfComplex, tagDataFormat displayFormat)
Interface IArrayTransfer

Write-only Data Access Map

PutScalar Method

Description Puts Scalar data in the Measurement Result buffer. The putScalar array
is not processed by the analyzer; it is just displayed. Any change to the
measurement state (changing the format, for example) will cause the
putScalar data to be overwritten with the data processed from the raw
data buffer.

 VB Syntax measData.putScalar, format, numPts, data

Variable (Type) - Description
measData An IArrayTransfer interface which supports the Measurement object.
format (enum NADataFormat) Format of the data. Choose from:

1 - naDataFormat_LinMag
 2 - naDataFormat_LogMag
 3 - naDataFormat_Phase
 6 - naDataFormat_Delay
 7 - naDataFormat_Real
 8 - naDataFormat_Imaginary
 9 - naDataFormat_SWR

Note: Smith and Polar formats are not allowed.

See the Data Access Map
numPts (integer) - Number of values. Usually the number of points in the trace

(chan.NumberOfPoints).
data (single) - A one-dimensional array of Scalar data matching the number of

points in the current measurement.
Return Type Not Applicable

172

Default Not Applicable

Examples Dim measData As IArrayTransfer

 Set measData = app.ActiveMeasurement

 measData.putScalar naDataFormat_LogMag, 201, dScalar(0)

C++ Syntax HRESULT putScalar\(tagDataFormat eFormat, long lNumValues, float*

pArrayOfScalar)
Interface IArrayTransfer

IArrayTransfer2 Interface

IArrayTransfer2 Interface

Description
This interface is exactly the same as the IArrayTransfer Interface except for the following:
Wherever there is an enum "NADataStore” argument in an IArrayTransfer method, the
corresponding IArrayTransfer2 method instead uses a BSTR (string) argument. This is necessary
with custom measurements which can produce buffers with names that do not have predefined
enumerations to address.

Method Description
getComplex2 Retrieves real and imaginary data from the specified buffer.
getNAComplex2 Retrieves typed NAComplex data from the specified buffer.
getPairedData2 Retrieves magnitude and phase data pairs from the specified buffer.
getScalar2 Retrieves scalar data from the specified buffer.
putComplex2 Puts real and imaginary data into the specified buffer.
putNAComplex2 Puts typed NAComplex data into the specified buffer.
putScalar2 Puts scalar data into the measurement result buffer.
Property Description
None

Read-only About Custom Measurements

GetComplex2 Method

Description Retrieves complex data from the specified location.

Note: This method is used only for getting data from a custom
measurement. To get data from a standard PNA measurement, use
GetComplex Method.

 VB Syntax measData.getComplex2 location, numPts, real(), imag()

Variable (Type) - Description
measData An IArrayTransfer2 interface which is supported by the Measurement

object.
location (string) - The name of the buffer where the data you want is residing.
numPts (long integer) - Number of data points requested

 [out] - specifies number of data elements returned

173

 [in] - specifies the data being requested or the capacity of the arrays
real (single) - Array to store the real values
imag (single) - Array to store the imaginary values
Return Type Single
Default Not Applicable

Examples Dim real(201) AS Single

 Dim imag(201) AS Single
 Dim pts as Integer
 Dim measData As IArrayTransfer2
 Set measData = app.ActiveMeasurement
 measData.getComplex2 "CorrData0", pts, real(0), imag(0)0 - naRawData

C++ Syntax HRESULT getComplex2(BSTR bufferName, long* pNumValues, float*

pReal, float* pImag)
Interface IArrayTransfer2

Read-only About Custom Measurements

GetNAComplex2 Method

Description Retrieves complex data from the specified location.

Note: This method is used only for getting data from a custom
measurement. To get data from a standard PNA measurement, use
GetNAComplex Method.

 VB Syntax measData.getNAComplex2 location, numPts, data

Variable (Type) - Description
measData An IArrayTransfer2 interface which is supported by the Measurement

object.
location (string) - The name of the buffer where the data you want is residing.
numPts (long integer) - Number of data points requested

 [out] - specifies number of data elements returned
 [in] - specifies the data being requested or the capacity of the dComplex
array

data (NAComplex) - A one-dimensional array of NaComplex to store the data.
Return Type NAComplex
Default Not Applicable

Examples Dim dComplex(201) AS NaComplex

 Dim measData As IArrayTransfer
 Dim pts as Long
 Set measData = app.ActiveMeasurement
 measData.getNAComplex2 "CorrData0", pts, dComplex(0)

Notes The data is stored as Real and Imaginary (Re and Im) members of the
NaComplex user defined type. You can access each number individually
by iterating through the array.
For i = 0 to NumPts-1
 dReal (i) = dcomplex (i).Re
 dImag (i) = dcomplex (i).Im
 Next i

C++ Syntax HRESULT getNAComplex2(BSTR bufferName, long* pNumValues,

TsComplex* pComplex)

174

Interface IArrayTransfer2

Read-only About Custom Measurements

GetPairedData2 Method

Description Retrieves pairs of data from the specified location.

Note: This method exists on a non-default interface. If you cannot access
this method, use the Get Data Method on IMeasurement.

Note: This method is used only for getting data from a custom
measurement. To get data from a standard PNA measurement, use
GetPairedData Method.

 VB Syntax measData.getPairedData2 location, format, numPts, d1, d2

Variable (Type) - Description
measData An IArrayTransfer2 interface which is supported by the Measurement

object.
location (string) - Name of the buffer where the data you want is residing.
format (enum NAPairedDataFormat) - Format in which you would like the

Paired data. Choose from:
• naLinMagPhase - Linear magnitude and phase
• naLogMagPhase - Log magnitude and phase
• naRealImaginary - Real and Imaginary

Note: Selecting naRealImaginary format is the same as using the
getComplex method

numPts (long integer) - Number of data points requested
 [out] - specifies number of data elements returned
 [in] - specifies the data being requested or the capacity of the dPaired
array

d1 (single) - Array to store the magnitude / real values
d2 (single) - Array to store the phase / imaginary values
Return Type Two Single arrays
Default Not Applicable

Examples Dim logm() As Single

 Dim phase() As Single
 Public measData As IArrayTransfer
 Set measData = app.ActiveMeasurement
 Dim numpts As Long
 numPoints = app.ActiveChannel.NumberOfPoints
 ReDim logm(numPoints)
 ReDim phase(numPoints)

 measData.getPairedData2 "CorrData0", naLogMagPhase, numPoints,
logm(0), phase(0)

 Print values(0), values(1)

C++ Syntax HRESULT getPairedData2(BSTR BufferName, tagNAPairedDataFormat

PairFormat, long* pNumValues, float* pReal, float* pImag)
Interface IArrayTransfer2

175

Read-only About Custom Measurements

GetScalar2 Method

Description Retrieves scalar data from the specified locations. You can NOT use this

command to get complex data.

Note: This method exists on a non-default interface. If you cannot access
this method, use the Get Data Method on IMeasurement.

Note: This method is used only for getting data from a custom
measurement. To get data from a standard PNA measurement, use
GetScalar Method.

 VB Syntax measData.getScalar2 location, format, numPts, data

Variable (Type) - Description
measData An IArrayTransfer2 interface which supports the Measurement object.
location (string) - Name of the buffer where the data you want is residing.
format (enum DataFormat) - Scalar format in which you would like the data.

Choose from:
• naDataFormat_Delay
• naDataFormat_Imaginary
• naDataFormat_LinMag
• naDataFormat_LogMag
• naDataFormat_Phase
• naDataFormat_Real

naDataFormat_SWR
numPts (long integer) - Number of data points requested

 [out] - specifies number of data elements returned
 [in] - specifies the data being requested or the capacity of the dScalar
array

data (single) - Array to store the scalar data.
Return Type Single
Default Not Applicable

Examples Dim dScalar() As Single

 Dim measData As IArrayTransfer
 Set measData = app.ActiveMeasurement
 Dim numpts as Long
 numpts = app.ActiveChannel.NumberOfPoints
 ReDim dScalar(numPoints)

 measData.getScalar2 "CorrData0", naDataFormat_LogMag, numpts,
dScalar(0)

 Print dScalar(0), dScalar(1)

C++ Syntax HRESULT getScalar2(BSTR bufferName, tagDataFormat DataFormat,

long* pNumValues, float* pVals)
Interface IArrayTransfer2

Write-only About Custom Measurements

176

PutComplex2 Method

Description Puts real and imaginary data into the specified location. This method

forces the channel into Hold mode to prevent the input data from being
overwritten.
Note: This method is used only for putting data into a custom
measurement. To put data into a standard PNA measurement, use
PutComplex Method

 VB Syntax measData.putComplex2 location, numPts, real(), imag(), [format]

Variable (Type) - Description
measData An IArrayTransfer2 interface which supports the Measurement object
location enum NADataStore) Where the Data will be put. Choose from:

 0 - naRawData
 1 - naCorrectedData
 2 - naMeasResult
 3 - naRawMemory
 4 - naMemoryResult
 5 - naDivisor
See the Data Access Map

numPts (long integer) - Number of data points in the channel
real() (single) - Array containing real data values
imag() (single) -Array containing imaginary data values
format (enum NADataFormat) optional argument - display format of the real

and imaginary data. Only used if destination is naMeasResult or
naMemoryResult buffer. If unspecified, data is assumed to be in
naDataFormat_Polar

• naDataFormat_Delay
• naDataFormat_Imaginary
• naDataFormat_LinMag
• naDataFormat_LogMag
• naDataFormat_Phase
• naDataFormat_Real
• naDataFormat_SWR
• naDataFormat_Smith

naDataFormat_Polar
Return Type Not Applicable
Default Not Applicable

Examples Dim measData As IArrayTransfer

 Set measData = app.ActiveMeasurement

 measData.putComplex2 "Memory:VectorResult0", 201,
real(0),imag(0),naDataFormat_SWR

C++ Syntax HRESULT putComplex2(BSTR bufferName, long lNumValues, float*

pReal, float* pImag, tagDataFormat displayFormat)
Interface IArrayTransfer2

Write-only About Custom Measurements

177

PutNAComplex2 Method

Description Puts complex data into the specified location. This method forces the

channel into Hold mode to prevent the input data from being overwritten.
The data is processed and displayed.
Note: This method is used only for putting data into a custom
measurement. To put data into a standard PNA measurement, use Put
NAComplex Method

 VB Syntax measData.putNAComplex2 location, numPts, data, [format]

Variable (Type) - Description
measData An IArrayTransfer2 interface which supports the Measurement object.
location (string) - Name of the buffer where the data will be put.
numPts (long integer) - Number of data points in the channel
data (NAComplex) - A one-dimensional array of Complex data matching the

number of points in the current measurement.
format (enum NADisplayFormat) - Optional argument. Format of the data. If

unspecified, naDataFormat_Polar is assumed. Only used when the
destination store is naMeasResult or naMemoryResult.

Return Type Not Applicable
Default Not Applicable

Examples Dim measData As IArrayTransfer

 Set measData = app.ActiveMeasurement

 measData.putNAComplex2 "Memory:VectorResult0", 201,
dRawComplex(0)

C++ Syntax HRESULT putNAComplex2(BSTR bufferName, long lNumValues,

TsComplex* pArrayOfComplex, tagDataFormat displayFormat)
Interface IArrayTransfer2

Write-only About Custom Measurements

PutScalar2 Method

Description Puts Scalar data in the Measurement Result buffer. The putScalar2 array

is not processed by the analyzer; it is just displayed. Any change to the
measurement state (changing the format, for example) will cause the
putScalar2 data to be overwritten with the data processed from the raw
data buffer.
Note: This method is used only for putting data into a custom
measurement. To put data into a standard PNA measurement, use
PutScalar Method

 VB Syntax measData.putScalar2, format, numPts, data

Variable (Type) - Description
measData An IArrayTransfer2 interface which supports the Measurement object.
format (enum NADataFormat) Format of the data. Choose from:

1 - naDataFormat_LinMag
 2 - naDataFormat_LogMag
 3 - naDataFormat_Phase
 6 - naDataFormat_Delay

178

 7 - naDataFormat_Real
 8 - naDataFormat_Imaginary
 9 - naDataFormat_SWR

Note: Smith and Polar formats are not allowed.

See the Data Access Map
numPts (integer) - Number of values. Usually the number of points in the trace

(chan.NumberOfPoints).
data (single) - A one-dimensional array of Scalar data matching the number of

points in the current measurement.
Return Type Not Applicable
Default Not Applicable

Examples Dim measData As IArrayTransfer

 Set measData = app.ActiveMeasurement

 measData.putScalar2 naDataFormat_LogMag, 201, dScalar(0)

C++ Syntax HRESULT putScalar2(tagDataFormat eFormat, long lNumValues, float*

pArrayOfScalar)
Interface IArrayTransfer2

INACustomMeasurement Interface

INACustomMeasurement Interface

Description
The INACustomMeasurement interface provides the capability to manipulate the unique
capabilities of a custom measurement. In addition, INACustomMeasurement interface provides
access to customized data processing blocks through the GetCustomAlgorithm method.
A custom measurement is a software component that is designed to "plug-in" to the PNA
software application.
See also CreateCustomMeasurement Method and Get DataByString Method.
To put and retrieve custom measurement data, use the IArrayTransfer2 Interface

Methods Description
GetCustomAlgorithm Retrieves a pointer to the internal custom algorithm.
GetCustomInterface Retrieves a pointer to the internal custom measurement object
Properties Description
None

Read-only About Custom Measurements

GetCustomAlgorithm Method

Description Retrieves an IUnknown interface to the specified internal custom

algorithm used by this measurement object. This interface can be queried

179

for a custom interface and subsequently used to manipulate a custom
algorithm object.

 VB Syntax Set custom = meas.GetCustomAlgorithm ({guid})

Variable (Type) - Description
custom (interface) - IUnknown or a custom interface.
meas (object) - A Measurement object
{guid} (string) - GUID of your custom algorithm in GUID format
Return Type IUnknown pointer
Default Not Applicable

Examples Dim custom as IMyCustomAlgorithmInterface

 Set custom = meas.GetCustomAlgorithm(“{12345678-56D3-11D5-AD50-
00108334AE98}"
 custom.MyCustomAlgorithmMethod ‘your custom methods and
properties

C++ Syntax HRESULT GetCustomAlgorithm(BSTR strGUID, IUnknown**

ppInterface);
Interface INACustomMeasurement
Remarks If the request is properly formatted and the custom algorithm requested is

not found, the method returns
E_NA_CUSTOM_ALGORITHM_NOT_FOUND.

Read-only About Custom Measurements

GetCustomInterface Method

Description Retrieves an IUnknown interface to the internal custom measurement

object corresponding to the measurement object on which this method is
called. This interface can be queried for a custom interface and
subsequently used to manipulate a custom measurement.

 VB Syntax Set custom = meas.GetCustomInterface

Variable (Type) - Description
custom (interface) - IUnknown or a custom interface.
meas (object) - A Measurement object
Return Type IUnknown pointer
Default Not Applicable

Examples Dim custom as IMyCustomMeasInterface

 Set custom = meas.GetCustomInterface
 custom.MyCustomMethod ‘your custom methods and properties

C++ Syntax HRESULT GetCustomInterface(IUnknown** ppInterface);
Interface INACustomMeasurement
Remarks If the measurement object on which the method is called is not a custom

measurement (created with CreateCustomMeasurement, or
corresponding front-panel operation), then the method returns
E_NA_NO_CUSTOM_MEASUREMENT.

180

ISourcePowerCalData Interface

ISourcePowerCalData Interface

Description
Contains methods for putting source power calibration data in and getting source power
calibration data out of the analyzer using typed data. The methods in this interface transfer data
more efficiently than methods that use variant data.

Method Description
getSourcePowerCalDataScalar Returns requested source power calibration data, if it exists.
putSourcePowerCalDataScalar Inputs source power calibration data to a channel, for a specific

source port.
Property Description
None

Read-only About Source Power Cal

getSourcePowerCalDataScalar Method

Description Retrieves (as scalar values) requested source power calibration data, if it

exists, from this channel.
Note: This method exists on a non-default interface. If you cannot access
this method, use the getSourcePowerCalData Method on IChannel.

 VB Syntax chandata.getSourcePowerCalDataScalar sourcePort, numValues, data

Variable (Type) - Description
chandata (interface) – – An ISourcePowerCalData interface pointing to a Channel

(object)
sourcePort (long integer) – The source port for which calibration data is being

requested.
numValues (long integer) – Number of data values.

[out] – specifies number of data values returned.
[in] – specifies number of values being requested (this must not be larger
than the capacity of the data array).

data (single) – Array to store the data.
Return Type Single
Default Not Applicable

Examples Dim numValues As Long

 Dim scalarCalValues() As Single
 Dim chanData As ISourcePowerCalData
 Const port1 As Long = 1
 numValues = app.ActiveChannel.NumberOfPoints
 ReDim scalarCalValues(numValues)
 Set chanData = app.ActiveChannel

181

 chanData.getSourcePowerCalDataScalar port1, numValues,
scalarCalValues(0)

 ’Print the data
 For i = 0 to numValues - 1
 Print scalarCalValues(i)
 Next I

C++ Syntax HRESULT getSourcePowerCalDataScalar(long sourcePort, long

*pNumValues, float *pVals);
Interface ISourcePowerCalData

Write-only. About Source Power Cal

putSourcePowerCalDataScalar Method

Description Inputs source power calibration data (as scalar values) to this channel for

a specific source port.
 VB Syntax chandata.putSourcePowerCalDataScalar sourcePort, numValues, data

Variable (Type) - Description
chandata (interface) – – An ISourcePowerCalData interface pointing to a Channel

(object)
sourcePort (long integer) – The source port for which calibration data is being input.
numValues (long integer) – Number of data values being input.

Note: If this does not equal the current number of points on the channel,
the calibration will not be valid.

data (single) – Array of source power cal data being input.
Return Type None
Default Not Applicable

Examples Dim chanData As ISourcePowerCalData

 Set chanData = app.ActiveChannel
 chanData.putSourcePowerCalDataScalar 1, 201, scalarCalValues(0)

C++ Syntax HRESULT putSourcePowerCalDataScalar(long sourcePort, long

numValues, float *pVals);
Interface ISourcePowerCalData

Limit Test Collection
Limit Test Collection

Description
Child of the Measurement Object. A collection that provides a mechanism for iterating through
the Measurement's LimitSegment objects (Limit Lines). The collection has 100 limit lines by
default.
The only way to get a handle to an individual limit line is by using the LimitTest collection. You
can either 1) set the property directly, or 2) set a variable a limit line in the LimitTest collection.
Examples

182

1)LimitTest(4).BeginResponse=.5
 2)Set lim2 = Application.Measurement.LimitTest(4)

Methods Description
GetTestResult Retrieves the Pass/Fail results of the Limit Test (State).
Item Use to get a handle on a limit line in the collection.
Properties Description
Count Returns the number of limit lines used in the measurement.
LineDisplay Displays the limit lines on the screen.
SoundOnFail Enables a beep on Limit Test fails.
State Turns ON and OFF limit testing.

Read-only About Limit Testing

GetTestResult Method

Description Returns the result of limit line testing. There are three ways to use this
command:

• If neither optional parameter is specified, limit results for ALL data
is returned.

• If one parameter is specified (start), the limit result for that data
point is returned.

If both parameters are specified, limit results are returned beginning with
start, and ending with (start+size)-1

 VB Syntax testRes = limts.GetTestResult [start,size]

Variable (Type) - Description
testRes (enum NALimitTestResult) - A dimensioned variable to store test results

0 - naLimitTestResult_None
 1 - naLimitTestResult_Fail
 2 - naLimitTestResult_Pass

limts A LimitTest (object)
start (long) - Optional argument. A start data point number to return limit test

results.
size (long) - Optional argument. Number of data points from start to return

limit test results.
Return Type Long Integer
Default Not Applicable

Examples Dim testRes As NALimitTestResult

 testRes = limts.GetTestResult
 Select Case testRes

 Case 0
 Print "No Test Result"

 Case 1
 Print "Fails"

 Case 2

183

 Print "Pass"

 End Select

C++ Syntax HRESULT GetTestResult(long lStart, long lSize, tagNALimitTestResult

*pVal)
Interface ILimitTest

Write/Read About Limits

LineDisplay Property

Description Turns the display of limit lines ON or OFF. To turn limit TESTING On and
OFF, use State Property.
Note: Trace data must be ON to view limit lines

 VB Syntax limitst.LineDisplay = state

Variable (Type) - Description
limitst A LimitTest (object)
state (boolean)

 0 - Turns the display of limit lines OFF
 1 - Turns the display of limit lines ON

Return Type Long Integer
Default 1 - ON

Limttest.LineDisplay = 1 ’WriteExamples
lineDsp = Limttest.LineDisplay ’Read

C++ Syntax HRESULT get_LineDisplay(VARIANT_BOOL *pVal)

 HRESULT put_LineDisplay(VARIANT_BOOL newVal)
Interface ILimitTest

Write/Read About Limits

SoundOnFail Property

Description Turns ON or OFF the audio indicator for limit failures.
 VB Syntax limitst.SoundOnFail = state

Variable (Type) - Description
limitst A LimitTest (object)
state (boolean)

 0 - Turns the sound OFF
 1 - Turns the sound ON

Return Type Long Integer
Default 1 - ON

Limttest.SoundOnFail = 1 ’WriteExamples
sound = Limttest.SoundOnFail ’Read

C++ Syntax HRESULT get_SoundOnFail(VARIANT_BOOL *pVal)

 HRESULT put_SoundOnFail(VARIANT_BOOL newVal)
Interface ILimitTest

184

LimitSegment Object
LimitSegment Object

Description
The LimitSegment object is an individual limit line. The only way to get a handle to an individual
limit line is by using the LimitTest collection. You can either 1) set the property directly, or 2) set a
variable a limit line in the LimitTest collection.
Examples
1)LimitTest(4).BeginResponse=.5
 2)Set lim2=Application.Measurement.LimitTest(4)

Methods Description
None
Properties Description
BeginResponse Specifies the Y-axis value that corresponds with Begin Stimulus (X-axis)

value.
BeginStimulus Specifies the beginning X-axis value of the Limit Line.
EndResponse Specifies the Y-axis value that corresponds with End Stimulus (X-axis)

value.
EndStimulus Specifies the End X-axis value of the Limit Line.
Type Specifies the Limit Line type.

Write/Read About Limits

BeginResponse Property

Description When constructing a limit line, specifies the amplitude value of the start of
a limit segment.

 VB Syntax limtseg.BeginResponse = value

Variable (Type) - Description
limtseg A LimitSegment (object)
value (double) - Amplitude value. No units
Return Type Double
Default 0

Set limtseg = meas.LimitTest(1)
 limtseg.BeginResponse = 10 ’Write

Examples

BegResp = limtseg.BeginResponse ’Read

C++ Syntax HRESULT get_BeginResponse(double *pVal)

 HRESULT put_BeginResponse(double newVal)
Interface ILimitSegment

185

Write/Read About Limits

BeginStimulus Property

Description When constructing a limit line, specifies the beginning X-axis value.
 VB Syntax limtseg.BeginStimulus = value

Variable (Type) - Description
limtseg A LimitSegment (object)
value (double) - Stimulus value. No units
Return Type Double
Default 0

Set limtseg = meas.LimitTest(1)
 limtseg.Type = naLimitSegmentType_Maximum
 limtseg.BeginStimulus = 3e9
 limtseg.EndStimulus = 4e9
 limtseg.BeginResponse = 10
 limtseg.EndResponse = 10

Examples

BegStim = limtseg.BeginStimulus ’Read

C++ Syntax HRESULT get_BeginStimulus(double *pVal)

 HRESULT put_BeginStimulus(double newVal)
Interface ILimitSegment

Write/Read About Limits

EndResponse Property

Description When constructing a limit line, specifies the amplitude value at the end of
the limit segment.

 VB Syntax limtseg.EndResponse = value

Variable (Type) - Description
limts A LimitSegment (object)
value (double) - Y-axis value of the End Response limit. No units
Return Type Double
Default 0

Set limtseg = meas.LimitTest(1)
 limtseg.EndResponse = 10 ’Write

Examples

EndResp = limtseg.EndResponse ’Read

C++ Syntax HRESULT get_EndResponse(double *pVal)

 HRESULT put_EndResponse(double newVal)
Interface ILimitSegment

Write/Read About Limits

EndStimulus Property

Description When constructing a limit line, specifies the stimulus value for the end of

186

the segment.
 VB Syntax limtseg.EndStimulus = value

Variable (Type) - Description
limtseg A LimitSegment (object)
value (double) - End Stimulus X-axis value. No units
Return Type Double
Default 0

Set limtseg = meas.LimitTest(1)
 limtseg.EndStimulus = 8e9 ’Write

Examples

EndStim = limtseg.EndStimulus ’Read

C++ Syntax HRESULT get_EndStimulus(double *pVal)

 HRESULT put_EndStimulus(double newVal)
Interface ILimitSegment

Write/Read About Limits

Type (limit) Property

Description Specifies the Limit Line type.
 VB Syntax limt(index).Type = value

Variable (Type) - Description
limt A LimitSegment (object)
index (variant) - Limit line number in the LimitTest collection
value (enum NALimitSegmentType) - Limit Line type. Choose from:

 0 - naLimitSegmentType_OFF - turns limit line OFF
 1 - naLimitSegmentType_Maximum - limit line fails with a data point
ABOVE the line
 2 - naLimitSegmentType_Minimum - limit line fails with a data point
BELOW the line

Return Type Long Integer
Default 0 - OFF

Set limts = meas.LimitTest
 limts.Type = naLimitSegmentType_Maximum ’Write

Examples

limitType = limts.Type ’Read

C++ Syntax HRESULT put_Type(tagNALimitSegmentType *pVal)

 HRESULT get_Type(tagNALimitSegmentType newVal)
Interface ILimitSegment

Marker Object
Marker Object

Description
Contains the methods and properties that control Markers.

187

To turn ON a marker, get a handle to the marker through the measurement object. (There is no
markers collection).
If not already activated, this command will turn ON marker 1
Measurement.marker(1).Format = naLinMag

You can also set the marker object to an object variable:
Dim m1 As Marker
 Set m1 = meas.marker(1)
There are 10 markers available per measurement:

• 1 reference marker
• 9 markers for absolute data or data relative to the reference marker (delta markers).

There are two ways to control markers through COM.
1. The Measurement object has properties that apply to all of the markers for that

measurement.
2. Marker object properties override the Measurement object properties. For example,

meas.MarkerFormat = naLinMag applies formatting to all markers. You can then
override that setting for an individual marker by specifying mark.Format = naLogMag on
the marker object.

Note: SearchFilterBandwidth is available through the measurement object.

Methods Description
Activate Makes an object the Active Object.

Shared with the Marker Object
SearchMax Searches the marker domain for the maximum value.
SearchMin Searches the marker domain for the minimum value.
SearchNextPeak Searches the marker’s domain for the next largest peak value.
SearchPeakLeft Searches the marker’s domain for the next VALID peak to the left of the

marker.
SearchPeakRight Searches the marker’s domain for the next VALID peak to the right of the

marker.
SearchTarget Searches the marker’s domain for the target value.
SearchTargetLeft Moving to the left of the marker position, searches the marker’s domain for

the target value.
SearchTargetRight Moving to the right of the marker position, searches the marker’s domain

for the target value.
SetCenter Changes the analyzer’s center frequency to the X-axis position of the

marker.
SetCW Changes the analyzer to sweep type CW mode and makes the CW

frequency the marker’s frequency.
SetElectricalDelay Changes the measurement’s electrical delay to the marker’s delay value.
SetReferenceLevel Changes the measurement’s reference level to the marker’s Y-axis value.
SetStart Changes the analyzer’s start frequency to the X-axis position of the

marker.
SetStop Changes the analyzer’s stop frequency to the X-axis position of the marker.
Property Description
Bucket Number Marker data point number
DeltaMarker Makes a marker relative to the reference marker
Format Linear, SWR, and so forth
Interpolated Turn marker interpolation ON and OFF
Number Read the number of the active marker
PeakExcursion Sets and reads the peak excursion value for the specified marker.
PeakThreshold Sets peak threshold for the specified marker.
SearchFunction Emulates the Tracking function in the marker search dialog box.
Stimulus Sets and reads the X-Axis value of the marker.
Target Value Sets the target value for the marker when doing Target Searches.
Tracking The tracking function finds the selected search function every sweep.

188

Type Sets and reads the marker type.
UserRange Assigns the marker to the specified User Range.
UserRangeMax Sets the stimulus stop value for the specified User Range.
UserRangeMin Sets the stimulus start value for the specified User Range.
Value Reads the Y-Axis value of the marker.

Write-only

Activate Method

Description Makes an object the Active Object. When making a measurement active,
the channel and window the measurement is contained in becomes the
active channel and active window.
In order to change properties on any of the active objects, you must first
have a "handle" to the active object using the Set command. For more
information, See Getting a Handle to an Object.
You do not have to make an object "Active" to set or read its properties
remotely. But an object must be "Active" to change its values from the
front panel.

 VB Syntax object.Activate

Variable (Type) - Description
object Measurement (object)

 or
 Marker (object)

Return Type Not Applicable
Default Not Applicable

Examples meas.Activate

 mark.Activate

C++ Syntax HRESULT Activate()
Interface IMeasurement

 IMarker

Write-only About Marker Search

SearchMax Method

Description Searches the marker domain for the maximum value.
 VB Syntax mark.SearchMax

Variable (Type) - Description
mark A Marker (object)
Return Type Not Applicable
Default Not Applicable

Examples mark.SearchMax

C++ Syntax HRESULT SearchMax()
Interface IMarker

189

Write-only About Marker Search

SearchMin Method

Description Searches the marker domain for the minimum value.
 VB Syntax mark.SearchMin

Variable (Type) - Description
mark A Marker (object)
Return Type Not Applicable
Default Not Applicable

Examples mark.SearchMin

C++ Syntax HRESULT SearchMin()
Interface IMarker

Write-only About Marker Search

SearchNextPeak Method

Description Searches the marker’s domain for the next peak value.
 VB Syntax mark.SearchNextPeak

Variable (Type) - Description
mark A Marker (object)
Return Type Not Applicable
Default Not Applicable

Examples mark.SearchNextPeak

C++ Syntax HRESULT SearchNextPeak()
Interface IMarker

Write-only About Marker Search

SearchPeakLeft Method

Description Searches the marker’s domain for the next VALID peak to the left of the
marker.

 VB Syntax mark.SearchPeakLeft

Variable (Type) - Description
mark A Marker (object)
Return Type Not Applicable
Default Not Applicable

Examples mark.SearchPeakLeft

C++ Syntax HRESULT SearchPeakLeft()
Interface IMarker

190

Write-only About Marker Search

SearchPeakRight Method

Description Searches the marker’s domain for the next VALID peak
 to the right of the marker.

 VB Syntax mark.SearchPeakRight

Variable (Type) - Description
mark A Marker (object)
Return Type Not Applicable
Default Not Applicable

Examples mark.SearchPeakRight

C++ Syntax HRESULT SearchPeakRight()
Interface IMarker

Write-only About Marker Search

SearchTarget Method

Description Searches the marker’s domain for the target value (specified with
mark.TargetValue). Searches to the right; then at the end of the search
domain, begins again at the start of the search domain.

 VB Syntax mark.SearchTarget

Variable (Type) - Description
mark A Marker (object)
Return Type Not Applicable
Default Not Applicable

Examples mark.SearchTarget

C++ Syntax HRESULT SearchTarget()
Interface IMarker

Write-only About Marker Search

SearchTargetLeft Method

Description Moving to the left of the marker position, searches the marker’s domain
for the target value (specified with mark.TargetValue).

 VB Syntax mark.SearchTargetLeft

Variable (Type) - Description
mark A Marker (object)
Return Type Not Applicable
Default Not Applicable

Examples mark.SearchTargetLeft

C++ Syntax HRESULT SearchTargetLeft()

191

Interface IMarker

Write-only About Marker Search

SearchTargetRight Method

Description Moving to the right of the marker position, searches the marker’s domain
for the target value (specified with mark.TargetValue).

 VB Syntax mark.SearchTargetRight

Variable (Type) - Description
mark A Marker (object)
Return Type Not Applicable
Default Not Applicable

Examples mark.SearchTargetRight

C++ Syntax HRESULT SearchTargetRight()
Interface IMarker

Write-only About Marker Functions

SetCenter Method

Description Changes the center stimulus to the stimulus value of the marker. The
start stimulus stays the same and the stop is adjusted.

 VB Syntax mark.SetCenter

Variable (Type) - Description
mark A Marker (object)
Return Type Not Applicable
Default Not Applicable

Examples mark.SetCenter

C++ Syntax HRESULT SetCenter()
Interface IMarker

Write-only About Marker Functions

SetCW Method

Description Changes the analyzer to sweep type CW mode and sets the CW
frequency to the marker’s frequency. Does not change anything if current
sweep type is other than a frequency sweep.

 VB Syntax mark.SetCW

Variable (Type) - Description
mark A Marker (object)
Return Type Not Applicable
Default Not Applicable

Examples mark.SetCW

192

C++ Syntax HRESULT SetCW()
Interface IMarker

Write-only About Marker Functions

SetElectricalDelay Method

Description Changes the measurement’s electrical delay to the marker’s delay value.
 VB Syntax mark.SetElectricalDelay

Variable (Type) - Description
mark A Marker (object)
Return Type Not Applicable
Default Not Applicable

Examples mark.SetElectricalDelay

C++ Syntax HRESULT SetElectricalDelay()
Interface IMarker

Write-only About Marker Functions

SetReferenceLevel Method

Description Changes the measurement’s reference level to the marker’s Y-axis value.
 VB Syntax mark.SetReferenceLevel

Variable (Type) - Description
mark A Marker (object)
Return Type Not Applicable
Default Not Applicable

Examples mark.SetReferenceLevel

C++ Syntax HRESULT SetReferenceLevel()
Interface IMarker

Write-only About Marker Functions

SetStart Method

Description Changes the start stimulus to the stimulus value of the marker. The stop
stimulus stays the same and the span is adjusted.

 VB Syntax mark.SetStart

Variable (Type) - Description
mark A Marker (object)
Return Type Not Applicable
Default Not Applicable

Examples mark.SetStart

193

C++ Syntax HRESULT SetStart()
Interface IMarker

Write-only About Marker Functions

SetStop Method

Description Changes the stop stimulus to the stimulus value of the marker. The start
stimulus stays the same and the span is adjusted.

 VB Syntax mark.SetStop

Variable (Type) - Description
mark A Marker (object)
Return Type Not Applicable
Default Not Applicable

Examples mark.SetStop

C++ Syntax HRESULT SetStop()
Interface IMarker

Write/Read About Markers

BucketNumber Property

Description Sets or returns the bucket number (data point) for the active marker.
 VB Syntax mark.BucketNumber = value

Variable (Type) - Description
mark A Marker (object)
value (long integer) - Data point. Choose any number between 0 and the

measurement’s number of data points - 1.
For example, with Number of points = 201, choose between 0 and 200

Return Type Long Integer
Default The first marker is set to the middle of the span. Subsequent markers are

set to the bucket number of the previously active marker.

mark.BucketNumber = 100 ’moves the active marker to data point 100 -
Write

Examples

pointNumber = mark.BucketNumber ’returns the data point number the
active marker is currently on. -Read

C++ Syntax HRESULT get_BucketNumber(long *pVal)

 HRESULT put_BucketNumber(long newVal)
Interface IMarker

Write/Read About Reference Markers

DeltaMarker Property

Description Sets a marker as a delta marker. The reference marker must already be

194

turned ON. See meas.ReferenceMarkerState
 VB Syntax mark.DeltaMarker = state

Variable (Type) - Description
app A Marker (object)
state (boolean) -

 ON (1) marker is a delta marker
 OFF (0) marker is NOT a delta marker

Return Type Boolean
Default OFF (0)

mark.DeltaMarker = True ’WriteExamples
delta = mark.DeltaMarker ’Read

C++ Syntax HRESULT get_DeltaMarker(VARIANT_BOOL bState)

 HRESULT put_DeltaMarker(VARIANT_BOOL *bState)
Interface IMarker

Write/Read About Marker Format

Format Property (marker)

Description Sets (or returns) the format of the marker.
 VB Syntax mark.Format = value

Variable (Type) - Description
mark A Marker (object)
value (enum NAMarkerFormat) - Choose from:

0 - naMarkerFormat_LinMag
 1 - naMarkerFormat_LogMag
 2 - naMarkerFormat_Phase
 3 - naMarkerFormat_Delay
 4 - naMarkerFormat_Real
 5 - naMarkerFormat_Imaginary
 6 - naMarkerFormat_SWR
 7 - naMarkerFormat_LinMagPhase
 8 - naMarkerFormat_LogMagPhase
 9 - naMarkerFormat_RealImaginary
 10 - naMarkerFormat_ComplexImpedance
 11 - naMarkerFormat_ComplexAdmittance

Return Type NAMarkerFormat
Default 1 - naMarkerFormat_LogMag

mark.Format = naMarkerFormat_SWR ’WriteExamples
fmt = mark.Format ’Read

C++ Syntax HRESULT get_Format(tagNAMarkerFormat *pVal)

 HRESULT put_Format(tagNAMarkerFormat newVal)
Interface IMarker

Write/Read About Markers

195

Interpolated Property

Description Turns marker Interpolation ON and OFF. Marker interpolation enables X-
axis resolution beyond the discrete data values. The analyzer will
calculate the x and y-axis data values between discrete data points. Use
meas.Interpolate to change interpolation of all markers in a
measurement. This command will override the measurement setting.

 VB Syntax mark.Interpolated = value

Variable (Type) - Description
mark A Marker (object)
value (boolean)

 False - Turns interpolation OFF
 True - Turns interpolation ON

Return Type Boolean
Default True (ON)

mark.Interpolated = 1 ’WriteExamples
interpolate = mark.Interpolated ’Read

C++ Syntax HRESULT get_Interpolated(VARIANT_BOOL *pVal)

 HRESULT put_Interpolated(VARIANT_BOOL newVal)
Interface IMarker

Read-only About Markers

Number Property

Description Returns the number of the marker.
 VB Syntax marknum = mark.Number

Variable (Type) - Description
marknum (long) - Variable to store marker number
mark A Marker (object)
Return Type Long Integer
Default Not applicable

Examples marknum = mark.Number ’Read

C++ Syntax HRESULT get_Number(long *pVal)
Interface IMarker

Write/Read About Marker Search

PeakExcursion Property

Description Sets and reads the peak excursion value for the specified marker. The
Excursion value determines what is considered a "peak".

 VB Syntax mark.PeakExcursion = value

Variable (Type) - Description

196

mark A Marker (object)
value (single) - Peak Excursion. Choose any number between -500 and 500
Return Type Single
Default 3

mark.PeakExcursion = 1 ’WriteExamples
PkExcur = mark.PeakExcursion ’Read

C++ Syntax HRESULT get_PeakExcursion(float *pVal)

 HRESULT put_PeakExcursion(float newVal)
Interface IMarker

Write/Read About Marker Search

PeakThreshold Property

Description Sets peak threshold for the specified marker. If a peak (using the criteria
set with PeakExcursion) is below this reference value, it will not be
considered when searching for peaks.

 VB Syntax mark.PeakThreshold = value

Variable (Type) - Description
mark A Marker (object)
value (single) - Peak Threshold. Choose any number between:

 -500 and 500
Return Type Single
Default -100db

mark.PeakThreshold = 1 ’WriteExamples
PkThresh = mark.PeakThreshold ’Read

C++ Syntax HRESULT get_PeakThreshold(float *pVal)

 HRESULT put_PeakThreshold(float newVal)
Interface IMarker

Write/Read About Marker Search

SearchFunction Property

Description Emulates the Tracking function in the marker search dialog box. The
value you choose for SearchFunction will determine the type of search
that takes place when the Tracking property is set true.
The tracking function finds the selected search function every sweep. In
effect, turning Tracking ON is the same as executing one of the
"Search..." methods (such as SearchMin, SearchMax) for every sweep.

 VB Syntax mark.SearchFunction = value

Variable (Type) - Description
mark A Marker (object)
value (enum NAMarkerFunction) - search function. Choose from:

0 - naMarkerFunction_None
 1 - naMarkerFunction_Min

197

 2 - naMarkerFunction_Max
 3 - naMarkerFunction_Target
 4 - naMarkerFunction_NextPeak
 5 - naMarkerFunction_PeakRight
 6 - naMarkerFunction_PeakLeft

Return Type Long Integer
Default 0 - naMarkerFunction_None

mark.SearchFunction = naMarkerFunction_Target ’When this marker is
set to track, it will track the Target value.

Examples

searchfunction = mark.SearchFunction ’Read

C++ Syntax HRESULT get_SearchFunction(tagNAMarkerFunction *pVal)

 HRESULT put_SearchFunction(tagNAMarkerFunction newVal)
Interface IMarker

Write/Read About Markers

Stimulus Property

Description Sets and reads the X-Axis value of the marker. If the marker is a delta
marker, the value will be relative to the reference marker.

 VB Syntax mark.Stimulus = value

Variable (Type) - Description
mark A Marker (object)
value (double) - X-Axis value. Choose any number within the full span of the

channel or User Range (if set).
Return Type Double
Default First activated Marker turns ON in the middle of the X-axis range.

Subsequent markers turn ON at the position of the most recently active
marker.

mark.Stimulus = 3e9 ’WriteExamples
XVal = mark.Stimulus ’Read

C++ Syntax HRESULT get_Stimulus(double *pVal)

 HRESULT put_Stimulus(double newVal)
Interface IMarker

Write/Read About Marker Search

TargetValue Property

Description Sets the target value for the marker when doing Target Searches
(SearchTargetLeft, SearchTarget, SearchTargetRight).

 VB Syntax mark.TargetValue = value

Variable (Type) - Description
mark A Marker (object)
value (single) - Target value. Choose any number between: -500 and 500
Return Type Single

198

Default 0

mark.TargetValue = 10.5 ’WriteExamples
target = mark.TargetValue ’Read

C++ Syntax HRESULT get_TargetValue(float *pVal)

 HRESULT put_TargetValue(float newVal)
Interface IMarker

Write/Read About Marker Search

Tracking Property

Description This property, when on, executes the search function
(marker.SearchFunction) every sweep.
In effect, turning Tracking ON is the same as executing one of the
immediate, one-time, "Search..." methods (such as SearchMin,
SearchMax) for every sweep.

 VB Syntax mark.Tracking = state

Variable (Type) - Description
mark A Marker (object)
state (boolean) - Tracking state. Choose from:

 ON (1)
 OFF (0)

Return Type Boolean
 0 - Tracking OFF
 1 - Tracking ON

Default 0 - OFF

mark.Tracking = 1 ’WriteExamples
markTracking = mark.Type ’Read

C++ Syntax HRESULT put_Tracking(VARIANT_BOOL bOn)

 HRESULT get_Tracking(VARIANT_BOOL * pbOn)
Interface IMarker

Write/Read About Marker Types

Type (Marker) Property

Description Sets and reads the marker type.
 VB Syntax mark.Type = value

Variable (Type) - Description
chan A Marker (object)
value (enum NAMarkerType) - Marker Type. Choose from:

 0 - naMarkerType_Normal - the X-axis value for a normal marker will
always be determined by the measurement data of the marker.
1 - naMarkerType_Fixed - retains and keeps its x-axis value at the time
the marker type is set.

Return Type Long Integer

199

Default naMarkerType_Normal

mark.Type = naMarkerType_Normal ’WriteExamples
MrkType = mark.Type ’Read

C++ Syntax HRESULT get_Type(tagNAMarkerType *pVal)

 HRESULT put_Type(tagNAMarkerType newVal)
Interface IMarker

Write/Read About User Ranges

UserRange Property

Description Assigns the marker to the specified User Range. This restricts the
marker’s x-axis travel to the User Range span, specified with Start and
Stop values.

• Each channel has 10 user ranges.
• Markers and trace statistics can be restricted to any user range.
• More than one marker can occupy a user range.
• User ranges can overlap. For example:

• User range 1 - 3GHz to 5GHz
• User range 2 - 4GHz to 6GHz

Note: User ranges are especially useful in restricting marker searches to
specific areas of the measurement.

 VB Syntax mark.UserRange = value

Variable (Type) - Description
mark A Marker (object)
value (long integer) - User Range. Choose any number between:

 0 and 9 (0=Full Span)
Return Type Long Integer
Default 0 - Full Span

mark.UserRange = 1 ’WriteExamples
UseRnge = mark.UserRange ’Read

C++ Syntax HRESULT get_UserRange(long *pRangeNumber)

 HRESULT put_UserRange(long lRangeNumber)
Interface IMarker

Read-only About Markers

Value Property

Description Reads the Y-Axis value of the marker. If the marker is a delta marker, the
value will be relative to the reference marker.
You cannot set the Y-axis value of a marker. The marker remains at the
position at the time you set marker.Type.

 VB Syntax YValue = mark.Value (format)

Variable (Type) - Description

200

YValue A variable to store the Y-axis value
mark A Marker (object)
format (enum NAMarkerFormat) - The format you would like the marker’s Y-

axis value. The number in parenthesis following the format is the number
of values that are returned in a variant array. Choose from:
0 - naMarkerFormat_LinMag (1)
 1 - naMarkerFormat_LogMag (1)
 2 - naMarkerFormat_Phase (1)
 3 - naMarkerFormat_Delay (1)
 4 - naMarkerFormat_Real (1)
 5 - naMarkerFormat_Imaginary (1)
 6 - naMarkerFormat_SWR (1)
 7 - naMarkerFormat_LinMagPhase (2)
 8 - naMarkerFormat_LogMagPhase (2)
 9 - naMarkerFormat_RealImaginary (2)
 10 - naMarkerFormat_ComplexImpedance (3)
 11 - naMarkerFormat_ComplexAdmittance (3)

Return Type Variant - The previous list of formats indicates the number of values that
are returned in a variant array

Default Not applicable

Examples YVal = mark.Value ’Read

C++ Syntax HRESULT get_Value(tagNAMarkerFormat format, VARIANT *pVal)
Interface IMarker

Measurements Collection

Measurement Collection

Description
A collection object that provides a mechanism for iterating through the Application
measurements. See Collections in the Analyzer.

Methods Description
Add Adds a Measurement to the collection.
Item Use to get a handle to a channel in the collection.
Remove Removes a measurement from the measurements collection.
Properties Description
Count Returns the number of measurements in the analyzer.
Parent Returns a handle to the current Application.

Write-only

Add (measurement) Method

Description Adds a Measurement to the collection.
VB Syntax meas.Add channel,param,source[,window]

201

meas A Measurements collection (object)
channel (long) - Channel number of the new measurement.
param (string) - Parameter of the new measurement. Choose from:

• "S11"
• "S22"
• "S21"
• "S12"
• "A"
• "B"
• "R1"
• "R2"

or
combine 2 of (A,B,R1,R2) in this format: "A/R1"

source (long integer) - Source port number; if unspecified, value is set to 1.
Only used for non-s-parameter measurements; ignored if s-parameter.

window (long integer) - Optional argument. Window number of the new
measurement. Choose 1 to 4. If unspecified, the S-Parameter will be
created in the Active Window.

Return Type None
Default None

Examples meass.Add 3,"A/R1",1,1 ’Adds A/R1 measurement to channel 3 in

window 1

C++ Syntax HRESULT Add(long ChannelNum, BSTR strParameter, long srcPort,

VARIANT_BOOL bNewWindow)
Interface IMeasurements

Measurement Object

Measurement Object

Description
The Measurement object is probably the most used object in the model. A measurement object
represents the chain of data processing algorithms that take raw data from the channel and make
it ready for display, which then becomes the scope of the Trace object.
A Measurement object is defined by it’s parameter (S11, S22, A/R1, B and so forth). The
measurement object is associated with a channel in that a channel drives the hardware that
produces the data that feeds the measurement. The root of a measurement is the raw data. This
buffer of complex paired data then flows through a number of processing blocks: error-correction,
trace math, phase correction, time domain, gating, formatting. All of these are controlled through
the measurement object.
The active measurement determines what ever else is active. The active measurement is best
described as the measurement that will be acted upon if you make a setting from the front panel.
It is the measurement whose "button" is pressed in the window with the red "active window"
frame. If you create a new measurement, that measurement becomes the active measurement.
Therefore, all automation methods with the word "Active" in them refer to the object associated
with the Active measurement, whether that object is a Channel, Window, Trace or Limit line.
You can access two other objects through the Measurement object: markers and limit test. For
example, because each measurement has its own set of markers, you can set a marker by doing
this:
Dim meas as measurement
 Set meas = pna.ActiveMeasurement
 Meas.marker(1).Stimulus = 900e6

202

 Meas.LimitTest.State = true ’ on

Methods Description
Activate Makes an object the Active Object.

Shared with the Marker Object
ActivateMarker Makes a marker the Active Marker.
ChangeParameter Changes the parameter of the measurement.
DataToDivisor Stores data for receiver power cal of unratioed measurements
DataToMemory Stores the active measurement into memory.
Delete Deletes the measurement object.
DeleteAllMarkers Deletes all of the markers from the measurement.
DeleteMarker Deletes a marker from the active measurement.
getData Retrieves Complex data from analyzer memory
getDataByString Retrieves variant data from the specified location in your choice of formats.
GetFilterStatistics Returns all four Filter Statistics
GetReferenceMarker Returns a handle to the reference marker.
GetTraceStatistics Returns the Trace Statistics.
InterpolateMarkers Turns All Marker Interpolation ON and OFF for the measurement.
putDataComplex Puts complex data into one of five data buffers.
putDataScalar Puts formatted variant data into the measurement results buffer.
SearchFilterBandwidth Searches the domain with the current BW target.
Properties Description
ActiveMarker Returns a handle to the Active Marker object.
BandwidthTarget The insertion loss value at which the bandwidth of a filter is measured.
BandwidthTracking Turns Bandwidth Tracking function ON and OFF.
CalibrationType Set or get the calibration type for the measurement.
channelNumber Returns the channel number.

Shared with the Channel Object
ElectricalDelay Sets electrical delay.
ErrorCorrection Set or get the state of error correction for the measurement.
FilterBW Returns the results of the SearchBandwidth method.
FilterCF Returns the Center Frequency result of the SearchBandwidth method.
FilterLoss Returns the Loss value of the SearchBandwidth method.
FilterQ Returns the Q (quality factor) result of the SearchBandwidth method.
Format Sets display format.
Gating (object)
InterpolateCorrection Turns ON and OFF the calculation of new error terms when stimulus

values change.
InterpolateNormalizatio
n

Turns ON and OFF normalization interpolation when stimulus values
change after receiver power cal of unratioed measurements.

LimitTest (collection)
LimitTestFailed Returns the results of limit testing
LoadPort Returns the load port number associated with an S-parameter reflection

measurement.
LogMagnitudeOffset Sets or returns the value that normalized, unratioed, receiver power

measurement data will be shifted by
marker (object)
MarkerFormat Sets or returns the format of all the markers in the measurement.
Mean Returns the mean value of the measurement.
Name Sets or returns the name of the measurement.
NAWindow (object)
Normalization Turns ON or OFF normalization for receiver power cal of unratioed

measurements
Number Returns the number of the measurement.
Parameter Returns the measurement Parameter.
PeakToPeak Returns the Peak to Peak value of the measurement.

203

PhaseOffset Sets the Phase Offset for the active channel.
ReferenceMarkerState Turns the reference marker ON or OFF
ShowStatistics Displays and hides the measurement statistics (peak-to-peak, mean,

standard deviation) on the screen.
Smoothing Turns ON and OFF data smoothing.
SmoothingAperture Specifies or returns the amount of smoothing as a ratio of the number of

data points in the measurement trace.
StandardDeviation Returns the standard deviation of the measurement.
StatisticsRange Sets the User Range number for calculating measurement statistics.
Trace (object)
TraceMath Performs math operations on the measurement object and the trace stored

in memory.
Transform (object)
View Sets (or returns) the type of trace displayed on the screen

Write-only About Markers

ActivateMarker Method

Description Makes a marker the Active Marker. Use meas.ActiveMarker to read the

number of the active marker.
 VB Syntax meas.ActivateMarker(Mnum)

Variable (Type) - Description
meas A Measurement (object)
Mnum (long integer) - the number of the marker to make active. Choose any

marker number from 1 to 9.
Return Type None
Default Not Applicable

Examples meas.ActivateMarker(1)’Write

C++ Syntax HRESULT ActivateMarker(long lMarkerNumber)
Interface IMeasurement
Remarks Use ReferenceMarkerState to control the Reference marker.

Write-only About Measurement Parameters

ChangeParameter Method

Description Changes the parameter of the measurement.
 VB Syntax meas.ChangeParameter(param,lPort)

Variable (Type) - Description
meas A Measurement (object)
param (string) - New parameter. Choose from:

 S11 | S22 | S21 | S12
Additionally, for 3-port analyzers only:
 S33 | S13 | S31 | S23 | S32

For non-ratioed measurements:

204

 A | B | R1 | R2
 C - 3-port analyzers only

For ratioed measurements:
A/B

A/C - 3 port analyzers only

B/A

B/C - 3 port analyzers only

C/A - 3 port analyzers only

C/B - 3 port analyzers only

A/R1

B/R1

C/R1 - 3 port analyzers only

A/R2

B/R2

R1/A

R2/A

R1/B

R2/B

R1/C - 3 port analyzers only

R2/R1

R1/R2

lPort (long integer)
 Load port if param is a reflection S-Parameter
Ignored if param is a transmission S-Parameter
Source port if param is anything other than an S-parameter

Return Type Not Applicable
Default Not Applicable

Examples meas.ChangeParameter "S11",1

C++ Syntax HRESULT ChangeParameter(BSTR parameter, long lPort)
Interface IMeasurement

Write-only About Receiver Cal

205

DataToDivisor Method

Description Stores the measurement’s data to the measurement’s “divisor” buffer for

use by the Normalization data processing algorithm. Normalization is
currently supported only on measurements of unratioed power, for
purpose of receiver power calibration. If DataToDivisor is called on a
ratioed measurement (such as an S-parameter), it will return an error.

 VB Syntax meas.DataToDivisor

Variable (Type) - Description
meas (object) - A Measurement object
Return Type Not Applicable
Default Not Applicable

Examples meas.DataToDivisor

C++ Syntax HRESULT DataToDivisor();
Interface IMeasurement

Write-only About Math Operations

DataToMemory Method

Description Stores the active measurement data into memory creating a memory
trace. The memory can then be displayed or used in calculations with the
measurement data.

 VB Syntax meas.DataToMemory

Variable (Type) - Description
meas A Measurement (object)
Return Type Not Applicable
Default Not Applicable

Examples meas.DataToMemory

C++ Syntax HRESULT DataToMemory()
Interface IMeasurement

Write-only About Measurement Parameters

Delete Method

Description Deletes the measurement.
 VB Syntax meas.Delete

Variable (Type) - Description
meas The Measurement object to delete (object)
Return Type Not Applicable
Default Not Applicable

Examples meas.Delete

206

C++ Syntax HRESULT Delete()
Interface IMeasurement

Write-only About Markers

DeleteAllMarkers Method

Description Deletes all of the markers from the measurement.
 VB Syntax meas.DeleteAllMarkers

Variable (Type) - Description
meas (object) - The Measurement object from which markers will be deleted.
Return Type Not Applicable
Default Not Applicable

Examples meas.DeleteAllMarkers

C++ Syntax HRESULT DeleteAllMarkers()
Interface IMeasurement

Write-only About Markers

DeleteMarker Method

Description Deletes a marker from the measurement.
 VB Syntax meas.DeleteMarker(Mnum)

Variable (Type) - Description
meas A Measurement (object)
Mnum (long) - Any existing marker number in the measurement
Return Type Not Applicable
Default Not Applicable

Examples meas.DeleteMarker(1)

C++ Syntax HRESULT DeleteMarker(long lMarkerNumber)
Interface IMeasurement

Read-only About Accessing Data

GetData Method

Description Retrieves variant data from the specified location in your choice of
formats.

Note: This method returns a variant which is less efficient than methods
available on the IArrayTransfer interface.

Note: If you plan to Put this data back into analyzer, putDataComplex
(variant data) method requires complex, two-dimensional data. Therefore,
request the data in Polar format.

 VB Syntax data = meas.GetData location, format

Variable (Type) - Description

207

data Variant array to store the data.
meas A Measurement (object)
location (enum NADataStore) - Where the data you want is residing. Choose

from:
0 - naRawData
 1 - naCorrectedData
 2 - naMeasResult
 3 - naRawMemory
 4 - naMemoryResult
 5 - naDivisor
See the Data Access Map

format (enum NADataFormat) - Format in which you would like the data. It does
not have to be the displayed format. Choose from:

• naDataFormat_LinMag
• naDataFormat_LogMag
• naDataFormat_Phase
• naDataFormat_Polar *
• naDataFormat_Smith *
• naDataFormat_Delay
• naDataFormat_Real
• naDataFormat_Imaginary
• naDataFormat_SWR

* Specfiy Smith or Polar formats to obtain complex data pairs, which
require a two-dimensional array varData (numpts, 2) to accomodate
both real and imaginary data.
All scalar formats return a single dimension varData(numpts).

Return Type Variant array - automatically dimensioned to the size of the data
Default Not Applicable

Examples Dim varData As Variant

 varData = meas.GetData(naMeasResult,naDataFormat_Phase)
 ’Print Data
 For i = 0 to chan.NumberOfPoints-1
 Print varData(i)
 Next i

C++ Syntax HRESULT getData(tagNADataStore DataStore, tagDataFormat

DataFormat, VARIANT *pData)
Interface IMeasurement

Read-only About Accessing Data

getDataByString Method

Description Retrieves variant data from the specified location in your choice of

formats.
 VB Syntax data = meas.getDataByString location, format

Variable (Type) - Description
data (variant) - Array to store the data.
meas (object) - A Measurement object
location (string) – Name of the buffer to be read.
format (enum NADataFormat) - Format in which you would like the data. It does

not have to be the displayed format. Choose from:

208

• naDataFormat_LinMag
• naDataFormat_LogMag
• naDataFormat_Phase
• naDataFormat_Polar *
• naDataFormat_Smith *
• naDataFormat_Delay
• naDataFormat_Real
• naDataFormat_Imaginary
• naDataFormat_SWR

* Specfiy Smith or Polar formats to obtain complex data pairs, which
require a two-dimensional array varData (numpts, 2) to accomodate
both real and imaginary data.
All scalar formats return a single dimension varData(numpts).

Return Type Variant array
Default Not Applicable

Examples meas.getDataByString “VectorResult0”, naDataFormat_Phase

C++ Syntax HRESULT getDataByString(BSTR location, tagDataFormat dataFormat,

VARIANT * pData);
Interface IMeasurement

Read-only About Marker Search

GetFilterStatistics Method

Description Returns all four Filter Statistics resulting from a SearchFilterBandwidth.
 To retrieve individual filter statistics, use meas.FilterCF, meas.FilterBW,
meas.FilterLoss, meas.FilterQ properties.

 VB Syntax meas.GetFilterStatistics cf,bw,loss,q

Variable (Type) - Description
meas A Measurement (object)
cf,bw,loss,q Dimensioned variables to store the returned values
Return Type (double) cf

 (single) bw,loss,q
Default Not Applicable

Examples 'Dimension variables

 Dim cf as Double
 Dim bw as Single
 Dim loss as Single
 Dim q as Single

 meas.GetFileterStatistics cf,bw,loss,q

C++ Syntax HRESULT GetFilterStatistics(double* centerFreq, float* bw, float* loss,

float* quality)
Interface IMeasurement

Write/Read About Reference Markers

209

GetReferenceMarker Method

Description Returns a handle to the reference marker.
 VB Syntax meas.GetReferenceMarker

Variable (Type) - Description
meas A Measurement (object)
Return Type Object
Default Not Applicable

Examples meas.GetReferenceMarker

C++ Syntax HRESULT GetReferenceMarker(IMarker** refMarker)
Interface IMeasurement

Read-only About Trace Statistics

GetTraceStatistics Method

Description Returns all four Trace Statistics. To retreive individual Trace statistics,
use Mean, PeakToPeak, StandardDeviation properties. Use
ShowStatistics to display the statistics of the screen.

 VB Syntax meas.GetTraceStatistics pp,mean,stdev

Variable (Type) - Description
meas A Measurement (object)
pp,mean,stdev (double) - Dimensioned variables to store the returned values
Return Type Double
Default Not Applicable

Examples ’Dimension variables

 Dim pp As Double
 Dim mean As Double
 Dim stdv As Double
 meas.GetTraceStatistics pp, mean, stdv

C++ Syntax HRESULT GetTraceStatistics(double* pp, double* mean, double*

stdDeviation)
Interface IMeasurement

Read-only

GetXAxisValues

Description Returns the stimulus values for the measurement. To understand how this
property is useful, see IMeasurement2 Interface.

 VB Syntax data = meas.GetXAxisValues

Variable (Type) - Description
data (Variant) Array to store the data.
meas A Measurement (object)
Return Type Variant
Default Not Applicable

210

Examples Dim varData As Variant

 Dim i As Integer
 varData = meas.GetXAxisValues
 ’Print Data
 For i = 0 To meas.NumberOfPoints - 1
 Print varData(i)
 Next i

C++ Syntax HRESULT GetXAxisValues(VARIANT* xData);
Interface IMeasurement2

Write-only About Markers

InterpolateMarkers Method

Description Turns All Marker Interpolation ON and OFF for the measurement. Marker
interpolation enables X-axis resolution between the discrete data values.
The analyzer will calculate the x and y-axis data values between discrete
data points. To override this property for individual markers, use the
Interpolated property.

 VB Syntax meas.Interpolate = value

Variable (Type) - Description
meas A Measurement (object)
value (boolean)

 False - Turns interpolation OFF for all markers in the measurement
 True - Turns interpolation ON for all markers in the measurement

Return Type Boolean
Default True (ON)

Examples meas.Interpolate = 1

C++ Syntax HRESULT InterpolateMarkers(VARIANT_BOOL bNewVal)
 Interface IMeasurement

Write-only About Accessing Data

PutDataComplex Method

Description Puts complex data into the specified location. This method forces the
channel into Hold mode to prevent the input data from being overwritten.
Data put in naRawData (location) will be re-processed whenever a
change is made to the measurement attributes such as format or
correction.
Data put in naMeasurement (location) will be overwritten by any
measurement attribute changes.

 VB Syntax meas.putDataComplex location, data

Variable (Type) - Description
meas A measurement (object)
location (enum NADataStore) Where the Data will be put. Choose from:

 0 - naRawData
 1 - naCorrectedData
 2 - naMeasResult

211

 3 - naRawMemory
 4 - naMemoryResult
 5 - naDivisor
See the Data Access Map

data (variant) - A two-dimensional variant array.
Note: All buffers except naMeasResult and naMemoryResult require
Complex data

Return Type Not Applicable
Default Not Applicable

Examples meas.putDataComplex naMeasResult, varData

C++ Syntax HRESULT putDataComplex(tagNADataStore DataStore, VARIANT

complexData)
Interface IMeasurement

Write-only About Accessing Data

PutDataScalar Method

Description Puts formatted variant scalar data into the measurement result buffer.
The data will be immediately processed and displayed. Subsequent
changes to the measurement state will be reflected on the display.

 VB Syntax meas.putDataScalar format, data

Variable (Type) - Description
meas A measurement (object)
format (enum NADataFormat) Format of the data. Choose from:

1 - naDataFormat_LinMag
 2 - naDataFormat_LogMag
 3 - naDataFormat_Phase
 4 - naDataFormat_Polar *
 5 - naDataFormat_Smith *
 6 - naDataFormat_Delay
 7 - naDataFormat_Real
 8 - naDataFormat_Imaginary
 9 - naDataFormat_SWR
* Smith and Polar formats require a two-dimensional array varData
(numpts, 2) to accomodate both real and imaginary data.
All other formats are a single dimension varData(numpts).

data (variant) - A two-dimensional complex variant data array.
Note: The getData (variant) method includes a "format" argument, which
allows scalar (one-dimensional) data. To put data back into the "raw"
data buffer using this (putDataComplex) method, specify Polar format
when using the getData method.

Return Type Not Applicable
Default Not Applicable

Examples measData.putDataScalar naDataFormat_Real, varData

C++ Syntax HRESULT putDataScalar(tagNADataStore DataStore, VARIANT

complexScalar)
Interface IMeasurement

212

Write-only About Marker Search

SearchFilterBandwidth Method

Description Searches the measurement data with the current BandwidthTarget
(default is -3). To continually track the filter bandwidth, use
BandwidthTracking.
This feature uses markers 1-4. If not already, they are activated. To turn
off these markers, either turn them off individually or DeleteAllMarkers.
The bandwidth statistics are displayed on the analyzer screen. To get the
bandwidth statistics, use either GetFilterStatistics or FilterBW, FilterCF ,
FilterLoss ,or FilterQ.
The analyzer screen will show either Bandwidth statistics OR Trace
statistics; not both.
To search a UserRange with the bandwidth search, first activate marker 1
and set the desired UserRange. Then send the SearchFilterBandwidth
command. The user range used with bandwidth search only applies to
marker 1 searching for the max value. The other markers may fall outside
the user range.

 VB Syntax meas.SearchFilterBandwidth

Variable (Type) - Description
meas A Measurement (object)
Return Type Not Applicable
Default Not Applicable

Examples meas.SearchFilterBandwidth

C++ Syntax HRESULT SearchFilterBandwidth()
Interface IMeasurement

Read-only About Markers

ActiveMarker Property

Description Returns a handle to the Active Marker object. You can either (1) use the
handle directly to access Marker properties and methods, or (2) set a
variable to the Marker object. The variable retains a handle to the original
object if another Marker becomes active.

 VB Syntax 1) meas.ActiveMarker.<setting>
 or
 2) Set mark = meas.ActiveMarker

Variable (Type) - Description
meas (object) - An Measurement object
<setting> A marker property (or method) and arguments
mark (object) - A marker object
Return Type marker object
Default None

Examples Public mark as marker

 Set mark = meas.ActiveMarker

213

C++ Syntax HRESULT get_ActiveMarker(IMarker** marker)
Interface IMeasurement

Write/Read About Marker Search

BandwidthTarget Property

Description Sets the insertion loss value at which the bandwidth of a filter is
measured (using BandwidthTracking or SearchFilterBandwidth). For
example, if you want to determine the filter bandwidth 3 db below the
bandpass peak value, set BandwidthTarget to -3.

 VB Syntax meas.BandwidthTarget = value

Variable (Type) - Description
meas A Measurement (object)
value (single) - Target value. Choose any number between -500 and 500
Return Type Single
Default -3

meas.BandwidthTarget = -3 ’WriteExamples
fbw = meas.BandwidthTarget ’Read

C++ Syntax HRESULT put_BandwidthTarget(float target)

 HRESULT get_BandwidthTarget(float* target)
Interface IMeasurement

Write/Read About Marker Search

BandwidthTracking Property

Descriaption Searches continually (every sweep) for the current BandwidthTarget
(default is -3). To search the filter bandwidth for ONE SWEEP only (not
continually), use meas.SearchFilterBandwidth.
This feature uses markers 1-4. To turn off these markers, either turn them
off individually or DeleteAllMarkers.
The bandwidth statistics are displayed on the analyzer screen. To get the
bandwidth statistics, use either GetFilterStatistics or FilterBW, FilterCF ,
FilterLoss ,or FilterQ.
The analyzer screen will show either Bandwidth statistics OR Trace
statistics; not both.
To restrict the search to a UserRange with the bandwidth search, first
activate marker 1 and set the desired UserRange. Then send the
SearchFilterBandwidth command. The user range used with bandwidth
search only applies to marker 1 searching for the max value. The other
markers may fall outside the user range.

 VB Syntax meas.BandwidthTracking = value

Variable (Type) - Description
meas A Measurement (object)
value (boolean)

214

 1 - Turns bandwidth tracking ON
 0 - Turns bandwidth tracking OFF

Return Type Boolean
Default 0 - OFF

meas.BandwidthTracking = 1 ’WriteExamples
bwtrack = meas.BandwidthTracking ’Read

C++ Syntax HRESULT put_BandwidthTracking(VARIANT_BOOL state)

 HRESULT get_BandwidthTracking(VARIANT_BOOL* state)
Interface IMeasurement

Write/Read About Performing a Calibration

CalibrationType Property

Description Specifies the type of calibration to perform or apply to the measurement.
 VB Syntax meas.CalibrationType = type

Variable (Type) - Description
meas A Measurement (object)
type (enum NACalType) - Calibration type. Choose from:

0 - naCalType_Response_Open
 1 - naCalType_Response_Short
 2 - naCalType_Response_Thru
 3 - naCalType_Response_Thru_And_Isol
 4 - naCalType_OnePort
 5 - naCalType_TwoPort_SOLT
 6 - naCalType_TwoPort_TRL
 7 - naCalType_None
 8 - naCalType_ThreePort_SOLT

Return Type NACalType
Default naCalType_None

meas.CalibrationType = naCalType_Response_Open ’WriteExamples
meascal = meas.CalibrationType ’Read

C++ Syntax HRESULT put_CalibrationType (tagNACalType CalType)

 HRESULT get_CalibrationType (tagNACalType* pCalType)
Interface IMeasurement

Read-only

Center Property

Description Returns the stimulus value of the center data point for the measurement. This
function does NOT work for segment sweep measurements. To understand
how this property is useful, see IMeasurement2 Interface.

 VB Syntax value = meas.Center

Variable (Type) - Description

215

value (Double) - Variable to store the returned value.
meas A Measurement (object)
Return Type Double
Default Not Applicable

Examples Print meas.Center ’prints the center data point

C++ Syntax HRESULT get_Center(double * Val);
Interface IMeasurement2

Read-only

Domain Property

Description Returns the domain (frequency,time, power) of the measurement. To
understand how this property is useful, see IMeasurement2 Interface.

 VB Syntax value = meas.Domain

Variable (Type) - Description
value (Enum as NADomainType) - variable to store the returned value

0 - Frequency
1 - Time
2 - Power

meas A Measurement (object)
Return Type Enum as NADomainType
Default Not Applicable

Examples Print meas.Domain ’prints the value of the domain enum

C++ Syntax HRESULT get_Domain(tagNADomainType * Val);
Interface IMeasurement2

Write/Read About Electrical Delay

ElectricalDelay Property

Description Sets the Electrical Delay for the active channel.
 VB Syntax meas.ElectricalDelay = value

Variable (Type) - Description
meas A Measurement (object)
value (double) - Electrical Delay in seconds. Choose any number between -

9.99 and 9.99
Return Type Double
Default 0

meas.ElectricalDelay = 1e-3 ’WriteExamples
edelay = meas.ElectricalDelay ’Read

C++ Syntax HRESULT get_ElectricalDelay(double *pVal)

 HRESULT put_ElectricalDelay(double newVal)

216

Interface IMeasurement

Write/Read About Performing a Calibration

ErrorCorrection Property

Description Sets (or returns) error correction ON or OFF for the measurement.
 VB Syntax meas.ErrorCorrection = value

Variable (Type) - Description
meas A Measurement (object)
value (boolean)

 0 - Turns error correction OFF
 1 - Turns error correction ON

Return Type Boolean
Default Not Applicable

meas.ErrorCorrection = 1 ’WriteExamples
errcorr = meas.ErrorCorrection ’Read

C++ Syntax HRESULT put_ErrorCorrection (VARIANT_BOOL bState)

 HRESULT get_ErrorCorrection (VARIANT_BOOL *bState)
Interface IMeasurement

Read-only About Marker Search

FilterBW Property

Description Returns the results of the SearchBandwidth method.
 VB Syntax filtBW = meas.FilterBW

Variable (Type) - Description
filtBW (single) - Variable to store bandwidth data
meas A Measurement (object)
Return Type Single
Default Not applicable

Examples filterBW = meas.FilterBW ’Read

C++ Syntax HRESULT get_FilterBW(float* bw)
Interface IMeasurement

Read-only About Marker Search

FilterCF Property

Description Returns the Center Frequency result of the SearchBandwidth method.
 VB Syntax filtCF = meas.FilterCF

217

Variable (Type) - Description
filtCF (double) - Variable to store bandwidth CF data
meas A Measurement (object)
Return Type Double
Default Not applicable

Examples filtCF = meas.FilterCF ’Read

C++ Syntax HRESULT get_FilterCF(double* centerFrequency)
Interface IMeasurement

Read-only About Marker Search

FilterLoss Property

Description Returns the Loss value of the SearchBandwidth method.
 VB Syntax filtLoss = meas.FilterLoss

Variable (Type) - Description
filtLoss (single) - Variable to store bandwidth Loss data
meas A Measurement (object)
Return Type Single
Default Not applicable

Examples filterLoss = meas.FilterLoss ’Read

C++ Syntax HRESULT get_FilterLoss(float* loss)
Interface IMeasurement

Read-only About Marker Search

FilterQ Property

Description Returns the Q (quality factor) result of the SearchBandwidth method.
 VB Syntax filtQ = meas.FilterQ

Variable (Type) - Description
filtQ (single) - Variable to store bandwidth Q data
meas A Measurement (object)
Return Type Single
Default Not applicable

Examples filtQ = meas.FilterQ ’Read

C++ Syntax HRESULT get_FilterQ(float* quality)
Interface IMeasurement

Write/Read About Data Format

218

Format Property

Description Sets or returns the display format of the measurement.
 VB Syntax meas.Format = value

Variable (Type) - Description
meas A Measurement (object)
value (enum NADataFormat) - Choose from:

0 - naDataFormat_LinMag
 1 - naDataFormat_LogMag
 2 - naDataFormat_Phase
 3 - naDataFormat_Polar
 4 - naDataFormat_Smith
 5 - naDataFormat_Delay
 6 - naDataFormat_Double
 7 - naDataFormat_Imaginary
 8 - naDataFormat_SWR

Return Type Long Integer
Default 1 - naDataFormat_LogMag

app.TriggerMode = naTriggerModePoint ’WriteExamples
fmt = meas.Format ’Read

C++ Syntax HRESULT get_Format(tagDataFormat *pVal)

 HRESULT put_Format(tagDataFormat newVal)
Interface IMeasurement

Write/Read About Interpolation

Interpolate Correction Property

Description Turns ON and OFF correction interpolation which calculates new error
terms when stimulus values change after calibration.
When this property is ON and error correction is being applied, the
calibration subsystem attempts to interpolate the error terms whenever
the stimulus parameters are changed.
When this property is OFF under the same circumstances, error
correction is turned OFF.

 VB Syntax meas.InterpolateCorrection = value

Variable (Type) - Description
meas A Measurement (object)
value (boolean) - Choose from:

True - Turns correction interpolation ON
 False - Turns correction interpolation OFF

Return Type Boolean
Default True

meas.InterpolateCorrection = FalseExamples
calInterpolate = InterpolateCorrection ’Read

C++ Syntax HRESULT get_InterpolateCorrection(boolean *pVal)

 HRESULT put_InterpolateCorrection(boolean newVal)
Interface IMeasurement

219

Write/Read About Receiver Cal

InterpolateNormalization Property

Description Turns ON and OFF normalization interpolation which calculates new
divisor data when stimulus values change after normalization.
When this property is ON and normalization is being applied, the
Normalization algorithm attempts to interpolate the divisor data whenever
the stimulus parameters are changed.
When this property is OFF under the same circumstances, normalization
is turned OFF.
Normalization is currently supported only on measurements of unratioed
power for the purpose of performing a receiver power calibration.

 VB Syntax meas.InterpolateNormalization = value

Variable (Type) - Description
meas (object) - A Measurement object
value (boolean)

0 – Turns normalization interpolation OFF
1 – Turns normalization interpolation ON

Return Type Boolean
Default 0 -OFF

meas.InterpolateNormalization = 1 'WriteExamples
normalized = meas.InterpolateNormalization 'Read

C++ Syntax HRESULT put_InterpolateNormalization(VARIANT_BOOL bState);

HRESULT get_InterpolateNormalization(VARIANT_BOOL *bState);
Interface IMeasurement

Read-only

IsSParameter Property

Description Returns true if measurement represents an S-Parameter
 VB Syntax value = meas.IsSparameter

Variable (Type) - Description
meas A Measurement (object)
value (Boolean)

1 True - measurement is an S-Parameter
0 False - measurement is NOT an S-Parameter

Return Type Boolean
Default True

Examples print app.IsSparameter

C++ Syntax HRESULT IsSparameter([out, retval] VARIANT_BOOL * bVal);
Interface IMeasurement2

220

Read-only About Limit Testing

LimitTestFailed Property

Description Returns the results of limit testing for the measurement.
 VB Syntax testFailed = meas.LimitTestFailed

Variable (Type) - Description
testFailed (boolean) Variable to store the returned value

False (0) - Limit Test Passed
 True (1) - Limit Test Failed

meas A Measurement (object)
Return Type Boolean
Default False returned if there is no testing in progress

Examples Dim testRes As Boolean

 testRes = meas.LimitTestFailed
 MsgBox (testRes)

C++ Syntax HRESULT get_LimitTestFailed(VARIANT_BOOL* trueIfFailed)
Interface IMeasurement

Read-only About Limit Testing

LoadPort Property

Description Returns the load port number associated with
an S-parameter reflection measurement. If
the measurement is not a reflection S-
parameter, the number returned by this
property will have no meaning.

 VB Syntax loadPort = meas.LoadPort

Variable (Type) - Description
loadPort (long integer) - The reflection measurement’s

load port number.
meas A Measurement (object)
Return Type Long Integer
Default Not Applicable

Examples Set meas = pna.ActiveMeasurement

 loadPort = meas.LoadPort

C++ Syntax HRESULT get_LoadPort(long *pPortNumber);
Interface IMeasurement

Write/Read About Receiver Cal

221

LogMagnitudeOffset Property

Description Sets or returns the power offset value in dBm that the normalized
unratioed power measurement data will be shifted by. The unratioed
power measurement is effectively calibrated to the power level specified
by the value of LogMagnitudeOffset as soon as the Normalization
property is set to ON after the DataToDivisor method has been called.

 VB Syntax meas.LogMagnitudeOffset = value

Variable (Type) - Description
meas (object) - A Measurement object
value (double) - Power offset in dBm. No limits are enforced on this value, but

the PNA receivers themselves have maximum and minimum power
specifications. This value must comply with those limits for a valid
receiver power calibration

Return Type Double
Default 0

meas.LogMagOffset = -10 ’Write (-10 dBm)Examples
calpower = meas.LogMagOffset ’Read
 meas.DataToDivisor ’Store meas data as measurement divisor
 meas.Normalize = 1 'Measurement is now calibrated to –10 dBm

C++ Syntax HRESULT put_LogMagOffset(double newVal);

HRESULT get_LogMagOffset(double *pVal);
Interface IMeasurement

Write/Read About Marker Format

MarkerFormat Property

Description Sets (or returns) the format of all the markers in the measurement. To
override this setting for an individual marker, use mark.Format

 VB Syntax meas.MarkerFormat = value

Variable (Type) - Description
meas A Measurement (object)
value (enum NAMarkerFormat) - Choose from:

0 - naMarkerFormat_LinMag
 1 - naMarkerFormat_LogMag
 2 - naMarkerFormat_Phase
 3 - naMarkerFormat_Delay
 4 - naMarkerFormat_Real
 5 - naMarkerFormat_Imaginary
 6 - naMarkerFormat_SWR
 7 - naMarkerFormat_LinMagPhase
 8 - naMarkerFormat_LogMagPhase
 9 - naMarkerFormat_RealImaginary
 10 - naMarkerFormat_ComplexImpedance
 11 - naMarkerFormat_ComplexAdmittance

Return Type Long Integer
Default 1 - naMarkerFormat_LogMag

222

meas.MarkerFormat = naMarkerFormat_SWR ’WriteExamples
fmt = mark.Format ’Read

C++ Syntax HRESULT put_MarkerFormat(tagNAMarkerFormat NewFormat)
Interface IMeasurement

Read-only About Trace Statistics

Mean Property

Description Returns the mean value of the measurement . To retrieve all 3 statistics
value at the same time, use meas.GetTraceStatistics

 VB Syntax average = meas.Mean

Variable (Type) - Description
average (single) - Variable to store mean value
meas A Measurement (object)
Return Type Single
Default Not applicable

Examples Dim average as Single

 average = meas.Mean ’Read

C++ Syntax HRESULT get_Mean(float* mean)
Interface IMeasurement

Write/Read About Receiver Cal

Normalization Property

Description Sets or returns normalization ON or OFF for the measurement.
Normalization is currently supported only on measurements of unratioed
power for the purpose of performing a receiver power calibration. If this
property is set to ON for a ratioed measurement (such as S-parameter), it
will return an error. This property will also return an error when set to ON
if the divisor buffer doesn’t yet exist.

 VB Syntax meas.Normalization = value

Variable (Type) - Description
meas (object) - A Measurement object
value (boolean)

0 – Turns normalization OFF
1 – Turns normalization ON

Return Type Boolean
Default 0 -OFF

meas.Normalization = 1 'WriteExamples
normalized = meas.Normalization 'Read

C++ Syntax HRESULT put_Normalization(VARIANT_BOOL bState);

HRESULT get_Normalization(VARIANT_BOOL *bState);

223

Interface IMeasurement

Write/Read About Traces

Name (Measurement) Property

Description Sets (or returns) the Name of the measurement. Measurement names
must be unique among the set of measurements. Measurement names
cannot be an empty string.
Note: This is the same name as trace.Name; when one changes, the
other changes.

 VB Syntax meas.Name = value

Variable (Type) - Description
meas A Measurement (object)
value (string) - A user defined name of the measurement
Return Type String
Default "CH1_S11_1" - name of the default measurement

meas.Name = "Filter BPass" ’WriteExamples
MName = meas.Name ’Read

C++ Syntax HRESULT get_Name(BSTR *pVal)

 HRESULT put_Name(BSTR newVal)
Interface IMeasurement

Read-only About Measurements

Number (Measurement) Property

Description Returns the Number of the measurement. Measurement numbers are
assigned internally.

Note: Measurement numbers are NOT the same as their number in the
Measurements collection. Measurement number is used to identify the
measurement associated with an event.

This property is used to identify measurements when events occur
through the OnMeasurementEvent callback. For example:
OnMeasurementEvent (naEventId_MSG_LIMIT_FAILED, 3)

 VB Syntax measNum = meas.Number

Variable (Type) - Description
measNum (long) - variable to store the measurement number
meas A Measurement (object)
Return Type Long Integer
Default "1" - number of the default measurement

Examples measNum = meas.Number

C++ Syntax HRESULT get_Number(long *MeasurementNumber)
Interface IMeasurement

224

Read-only

NumberOfPoints Property

Description Returns the number of data points of the measurement. To understand how
this property is useful, see IMeasurement2 Interface.

 VB Syntax value = meas.NumberOfPoints

Variable (Type) - Description
value (Long) - variable to store the returned value
meas A Measurement (object)
Return Type Long Integer
Default Not Applicable

Examples Print meas.NumberOfPoints ’prints the number of data points

C++ Syntax HRESULT get_NumberOfPoints(long *pVal);
Interface IMeasurement2

Read-only

Parameter Property

Description Returns the measurement Parameter. To change the parameter, use
meas.ChangeParameter

 VB Syntax measPar = meas.Parameter

Variable (Type) - Description
measPar (string) - Variable to store Parameter string
meas A Measurement (object)
Return Type String
Default Not applicable

Examples measPar = meas.Parameter ’Read

C++ Syntax HRESULT get_Parameter(BSTR *pVal)
Interface IMeasurement

Read-only About Trace Statistics

PeakToPeak Property

Description Returns the Peak to Peak value of the measurement.To retreive all 3
statistics value at the same time, use meas.GetTraceStatistics

 VB Syntax pp = meas.PeakToPeak

Variable (Type) - Description

225

pp (single) - Variable to store peak-to-peak value
meas A Measurement (object)
Return Type Single
Default Not applicable

Examples pp = meas.PeakToPeak ’Read

C++ Syntax HRESULT get_PeakToPeak(float* pp)
Interface IMeasurement

Write/Read About Phase Offset

PhaseOffset Property

Description Sets the Phase Offset for the active channel.
 VB Syntax meas.PhaseOffset = value

Variable (Type) - Description
meas A Measurement (object)
value (double) - PhaseOffset in degrees. Choose any number between:

 -360 and +360
Return Type Double
Default 0

meas.PhaseOffset = 25 ’WriteExamples
poffset = meas.PhaseOffset ’Read

C++ Syntax HRESULT get_PhaseOffset(double *pVal)

 HRESULT put_PhaseOffset(double newVal)
Interface IMeasurement

Read-only

ReceivePort Property

Description Returns the receiver (response) port number of measurement. To understand
how this property is useful, see IMeasurement2 Interface.

 VB Syntax value = meas.ReceivePort

Variable (Type) - Description
meas A Measurement (object)
value (Long) - Variable to store the returned value
Return Type Long Integer
Default Not Applicable

Examples rp = meas.ReceivePort

C++ Syntax HRESULT ReceivePort([out, retval] Long* rcvPort);
Interface IMeasurement2

226

Write/Read About Reference Markers

ReferenceMarkerState Property

Description Turn ON or OFF the reference marker. (can you access marker10?)
 VB Syntax meas.ReferenceMarkerState = state

Variable (Type) - Description
app A Measurement (object)
state (boolean) -

 ON (1) turns the reference marker ON
 OFF (0) turns the reference marker OFF

Return Type Boolean
Default 0 - OFF

meas.ReferenceMarkerState = TrueExamples
reference = meas.ReferenceMarkerState

C++ Syntax HRESULT get_ReferenceMarkerState(VARIANT_BOOL bState)

 HRESULT put_ReferenceMarkerState(VARIANT_BOOL* bState)
Interface IMeasurement

Write/Read About Trace Statistics

ShowStatistics Property

Description Displays and hides the measurement (Trace) statistics (peak-to-peak,
mean, standard deviation) on the screen. To display measurement
statistics for a narrower band of the X-axis, use StatisticsRange.
The analyzer will display either measurement statistics or Filter
Bandwidth statistics; not both.

 VB Syntax meas.ShowStatistics = value

Variable (Type) - Description
meas A Measurement (object)
value (boolean) - Boolean value:

1 - Show statistics
 0 - Hide statistics

Return Type Boolean
Default 0 - Hide

meas.ShowStatistics = True ’WriteExamples
showstats = meas.ShowStatistics ’Read

C++ Syntax HRESULT put_ShowStatistics(VARIANT_BOOL bState)
Interface IMeasurement

Write/Read About Smoothing

227

SmoothingAperture Property

Description Specifies or returns the amount of smoothing as a ratio of the

number of data points in the measurement trace.
 VB Syntax meas.SmoothingAperture = value

Variable (Type) - Description
meas A Measurement (object)
value (double) - Smoothing Aperture. A ratio of (aperture points / trace

points)/100 Choose any number between .01 and .25.
Return Type Double
Default .25

meas.SmoothingAperture = .10 ’WriteExamples

saperture = meas.SmoothingAperture ’Read

C++ Syntax HRESULT get_SmoothingAperture(double *pVal)

 HRESULT put_SmoothingAperture(double newVal)
Interface IMeasurement

Write/Read About Smoothing

Smoothing Property

Description Turns ON and OFF data smoothing.
 VB Syntax meas.Smoothing = state

Variable (Type) - Description
meas A Measurement (object)
state (boolean)

 1 - Turns smoothing ON
 0 - Turns smoothing OFF

Return Type Boolean
Default 0

meas.Smoothing = 1 ’WriteExamples
smooth = meas.Smoothing ’Read

C++ Syntax HRESULT get_Smoothing(VARIANT_BOOL *pVal)

 HRESULT put_Smoothing(VARIANT_BOOL newVal)
Interface IMeasurement

Read-only

SourcePort Property

Description Returns the source port of measurement. To understand how this property is
useful, see IMeasurement2 Interface.

228

 VB Syntax value = meas.SourcePort

Variable (Type) - Description
meas A Measurement (object)
value (Long) - Variable to store the returned value
Return Type Long Integer
Default Not Applicable

Examples sp = meas.SourcePort

C++ Syntax HRESULT SourcePort([out, retval] Long* srcPort);
Interface IMeasurement2

Read-only

Span Property

Description Returns the stimulus span of the measurement (stop-start data points). To
understand how this property is useful, see IMeasurement2 Interface.

 VB Syntax value = meas.Span

Variable (Type) - Description
value (Double) - Variable to store the returned value.
meas A Measurement (object)
Return Type Double
Default Not Applicable

Examples Print meas.Span ’prints the span of the measurement

C++ Syntax HRESULT get_Span(double * Val);
Interface IMeasurement2

Read-only About Trace Statistics

StandardDeviation Property

Description Returns the standard deviation of the measurement.
 To retreive all 3 statistics value at the same time, use
meas.GetTraceStatistics

 VB Syntax stdev = meas.StandardDeviation

Variable (Type) - Description
stdev (single) - Variable to store standard deviation value
meas A Measurement (object)
Return Type Single
Default Not applicable

Examples stdev = meas.StandardDeviation ’Read

C++ Syntax HRESULT get_StandardDeviation(float* stdDeviation)
Interface IMeasurement

229

Read-only

Start Property

Description Returns the stimulus value of the first data point for the measurement. To
understand how this property is useful, see IMeasurement2 Interface.

 VB Syntax value = meas.Start

Variable (Type) - Description
value (Double) - Variable to store the returned value
meas A Measurement (object)
Return Type Double
Default Not Applicable

Examples Print meas.Start ’prints the stimulus value of the first data point

C++ Syntax HRESULT get_Start (double * Val);
Interface IMeasurement2

Write/Read About User Ranges

Statistics Range Property

Description Sets the User Range number for calculating measurement statistics. Set
the start and stop values for a User Range with chan.UserRangeMin and
chan.UserRangeMax.
There are 9 User Ranges per channel. User ranges are applied
independently to any measurement.

 VB Syntax meas.StatisticsRange = value

Variable (Type) - Description
meas A Measurement (object)
value (long integer) - Range Number. Choose any number between 0 and 9.

 1 - 9 are user-defined ranges
 0 is Full Span

Return Type Long Integer
Default 0

meas.StatisticsRange = 2 ’WriteExamples
statrange = meas.StatisticsRange ’Read

C++ Syntax HRESULT get_StatisticsRange(long* rangeNumber)

 HRESULT put_StatisticsRange(long rangeNumber)
Interface IMeasurement

Read- only

230

Stop Property

Description Returns the stimulus value of the last data point for the measurement. To
understand how this property is useful, see IMeasurement2 Interface.

 VB Syntax value = meas.Stop

Variable (Type) - Description
value (Double) Variable to store the returned value
meas A Measurement (object)
Return Type Double
Default Not Applicable

Examples Print meas.Stop ’prints the stimulus value of the last data point

C++ Syntax HRESULT get_Stop(double * Val);
Interface IMeasurement2

Write/Read About Math Operations

TraceMath Property

Description Performs math operations on the measurement object and the trace
stored in memory. (There MUST be a trace stored in Memory to perform
math. See Meas.DataToMemory method.)

 VB Syntax meas.TraceMath = value

Variable (Type) - Description
meas A measurement (object)
value (enum NAMathOperation) - Choose from:

0 - naDataNormal
 1 - naDataMinusMemory
 2 - naDataPlusMemory
 3 - naDataDivMemory
 4 - naDataTimesMemory

Return Type NAMathOperation
Default Normal (0)

meas.TraceMath = naDataMinusMemory ’WriteExamples
mathOperation = meas.TraceMath ’Read

C++ Syntax HRESULT get_TraceMath(tagNAMathOperation* pMathOp)

 HRESULT put_TraceMath(tagNAMathOperation mathOp)
Interface IMeasurement

Write/Read About Math Operations

View Property

Description Sets (or returns) the type of trace displayed on the screen.
 VB Syntax meas.View = value

Variable (Type) - Description
meas A measurement (object)

231

value (enum NAView) - Type of trace. Choose from:
0 - naData
 1 - naDataAndMemory
 2 - naMemory
 3 - naNoTrace
Note: The naData trace may reflect the result of a TraceMath operation.

Return Type NAView
Default naData

meas.View = naData ’WriteExamples
trceview = meas.View ’Read

C++ Syntax HRESULT get_View(tagNAView* pView)

 HRESULT put_View(tagNAView newView)
Interface IMeasurement

IMeasurement2 Interface
IMeasurement2 Interface

Description
This interface extends the Measurement Interface. The properties and methods for the
Measurement2 Interface return values that are set from the Channel Object. This is necessary for
the following reason.
Every measurement carries with it a snapshot of the stimulus properties of the channel that were
in affect when the measurement last acquired data. Therefore, it is the measurement that
provides the most accurate stimulus description of its data. Any change made to the channel
after the measurement was acquired renders the IChannel interface unreliable in terms of
describing the measurement.
For example, if during a long measurement sweep, you change number of points, query
chan.NumberofPoints then read the measurement data, the channel settings you read will reflect
the change, but the data will not. If you query meas2.NumberofPoints, the setting and the data
will both reflect the number of points before the change occurred.
IChannel should be used to setup and query the stimulus values of the channel without regard to
the measurements it feeds.

Methods Description
GetXAxisValues Returns the stimulus values for the specified measurement.
Properties Description
Start Returns the stimulus value of the first point for the measurement.
Stop Returns the stimulus value of the last point for the measurement.
Center Returns the stimulus value of the center point for the measurement.

This function does not work for segment sweep measurements.
Span Returns the stimulus span (stop - start) for the measurement.
Domain Returns the domain (frequency, time, power) for the measurement.
NumberOfPoints Returns the Number of Points of the measurement.
IsSparameter Returns true if measurement represents an S-Parameter.
SourcePort Returns the source port of the measurement.
ReceivePort Returns the receiver port of the measurement.

232

NAWindows Collection

NAWindows Collection

Description
A collection object that provides a mechanism for iterating through the Application windows. See
Collections in the Analyzer.

Methods Description
Add Adds a window to the NAWindows collection.
Item Use to get a handle to a channel in the collection.
Remove Removes a window from the NAWindows collection.
Properties Description
Count Returns the number of windows on the analyzer.
Parent Returns a handle to the current Application.

Write-only About Windows

Add (NAWindows) Method

Description Add a window to the display. Does not add a measurement. The window
number must not already exist.

VB Syntax wins.Add [item]
Variable (Type) - Description
wins A NAWindow collection (object)
item (variant) - optional argument; Window number. Range between 1 - 4
Return Type Object
Default Not Applicable

Examples wins.Add 3 ’Creates a window number 3

C++ Syntax HRESULT Add(long windowNumber)
Interface INAWindows

NAWindow Object

NAWindow Object

Description
The NAWindow object controls the part of the display that contains the graticule, or what is
written on the display.

Methods Description
Autoscale Autoscales all measurements in the window.

Shared with the Trace Object
ShowMarkerReadout Shows and Hides the Marker readout for the active marker in the

upper-right corner of the window object.

233

ShowTable Shows or Hides the specified table for the active measurement in the
lower part of the window object.

Property Description
ActiveTrace Sets a trace to the Active Trace.
MarkerReadout Sets and reads the state of the Marker readout for the active marker

in the upper-right corner of the window object.
MarkerReadoutSize Specifies the size of font used when displaying Marker readout in the

selected window.
OneMarkerReadoutPerTrac
e

Either show marker readout of only the active trace or all of the traces
simultaneously.

Title Writes or reads a custom title for the window.
TitleState Turns ON and OFF the window title.
Traces (collection)
WindowNumber Reads the number of the active window.
WindowState Maximizes or minimizes a window.

Shared with the Application Object

Write-only About Display Formatting

Autoscale Method

Description Autoscales the trace (Trace object) or all of the traces (NAWindow
object).

 VB Syntax object.Autoscale

Variable (Type) - Description
object Trace (object)

 or
 NAWindow (object)

Return Type Not Applicable
Default Not Applicable

Examples Trac.Autoscale ’Autoscales the trace

 Win.Autoscale ’Autoscales all the traces in the window -Write

C++ Syntax HRESULT AutoScale()
Interface INAWindow

 ITrace

Write-only About Display Formatting

ShowMarkerReadout Method

Description Shows and Hides the Marker readout for the active marker in the upper-
right corner of the window.

 VB Syntax win.ShowMarkerReadout state

Variable (Type) - Description
win A NAWindow (object)
state (boolean) -

 True (1) - Show the Marker readout

234

 False (0) - Hide the Marker readout
Return Type Not Applicable
Default Not Applicable

Examples win.ShowMarkerReadout True

C++ Syntax HRESULT ShowMarkerReadout(VARIANT_BOOL bState)
Interface INAWindow

Write-only About Display Formatting

ShowTable Method

Description Shows or Hides the specified table for the window’s active measurement
in the lower part of the window.

 VB Syntax win.ShowTable value

Variable (Type) - Description
win A NAWindow (object)
value (enum naTable) - The table to show or hide. Choose from:

0 - naTable_None
 1 - naTable_Marker
 2 - naTable_Segment
 3 - naTable_Limit

Return Type Not Applicable
Default Not Applicable

Examples win.ShowTable naTable_limit

C++ Syntax HRESULT ShowTable (tagNATableType table)
Interface INAWindow

Read-only About Traces

ActiveTrace Property

Description Returns a handle to the Active Trace object. You can either (1) use the
handle directly to access trace properties and methods, or (2) set a
variable to the trace object. The variable retains a handle to the original
trace if another trace becomes active.

VB Syntax 1) win.ActiveTrace.<setting>
 or
 2) Set trce = win.ActiveTrace

Variable (Type) - Description
trce A Trace (object)
win An NAWindow (object)
<setting> A trace property (or method) and arguments
Return Type An NAWindow object
Default None

Examples 1) win.ActiveTrace.Autoscale

 2) Public trce as Trace
 Set trce = Application.ActiveNAWindow.ActiveTrace

235

C++ Syntax HRESULT get_ActiveTrace(ITrace* *pVal)
Interface INAWindow

Write/Read About Marker Readout

MarkerReadout Property

Description Enables or disables the readout of markers in the window. To show the
marker on the screen use ShowMarkerReadout Method.

 VB Syntax win.MarkerReadout = state

Variable (Type) - Description
win A NAWindow (object)
state (boolean)

True (1) - enables marker readout
 False (0) - disables marker readout

Return Type Boolean
Default True

Examples win.MarkerReadout = True ’Write

State = app.ActiveNAWindow.MarkerReadout ’Read

C++ Syntax HRESULT get_MarkerReadout(VARIANT_BOOL *pVal)

 HRESULT put_MarkerReadout(VARIANT_BOOL newVal)
Interface INAWindow

Write/Read About Marker Readout

MarkerReadoutSize Property

Description Specifies the size of font used when displaying Marker Readout in the
selected window.

 VB Syntax win.MarkerReadoutSize = value

Variable (Type) - Description
win A NAWindow (object)
value (enum NAFontSize)

0 - naDefault - marker readout appears in default font size
1 - naLarge - marker readout appears in large font size

Return Type Long Integer
Default naDefault

Examples win.MarkerReadoutSize = naDefault ’write default size

for marker readout

Dim Size As NAFontSize
 Size = app.ActiveNAWindow.MarkerReadoutSize ’Read

C++ Syntax HRESULT get_MarkerReadoutSize(tagNAFontSize *pVal)

HRESULT put_MarkerReadoutSize(tagNAFontSize newVal)

236

Interface INAWindow

Write/Read About Marker Readout

OneReadoutPerTrace Property

Description Either show marker readout of only the active trace or all of the traces
simultaneously.

 VB Syntax win.OneReadoutPerTrace = state

Variable (Type) - Description
win A NAWindow (object)
value (boolean)

True (1) - show a single marker per trace
 False (0) - show up to 4 markers per active trace

Return Type Boolean
Default False (0)

Examples win.OneReadoutPerTrace = True ’Write

State = app.ActiveNAWindow.OneReadoutPerTraceBegResp ’Read

C++ Syntax HRESULT get_OneReadoutPerTrace(VARIANT_BOOL *pVal)

 HRESULT put_OneReadoutPerTrace(VARIANT_BOOL newVal)
Interface INAWindow

Write/Read About Title

Title Property

Description Writes or reads a custom title for the window. Newer entries replace (not
append) older entries.Turn the title ON and OFF with TitleState

 VB Syntax win.Title = string

Variable (Type) - Description
win A NaWindow (object)
string (long) - Title limited to 50 characters.
Return Type String
Default Null

win.Title = "Hello World" ’WriteExamples
titl = win.Title ’Read

C++ Syntax HRESULT get_Title(BSTR *title)

 HRESULT put_Title(BSTR title)
Interface INAWindow

Write/Read About Titles

237

TitleState Property

Description Turns ON and OFF the window title. Write a window title with Title
 VB Syntax win.TitleState = state

Variable (Type) - Description
win A NaWindow (object)
state (boolean)

 True (1) - Title ON
 False (0) - Title OFF

Return Type Long Integer
 0 - Title OFF
 1 - Title ON

Default 0 - OFF

win.TitleState = True ’WriteExamples
titlestate = win.TitleState ’Read

C++ Syntax HRESULT get_TitleState(VARIANT_BOOL* bState)

 HRESULT put_TitleState(VARIANT_BOOL bState)
Interface INAWindow

Read-only

WindowNumber Property

Description Returns the window number. You might use this property to identify a
particular window so that you can create a new Measurement in that
window.

 VB Syntax value = win.WindowNumber

Variable (Type) - Description
win A NAWindow (object)
value (long integer) - Variable to store the returned window number
Return Type Long Integer
Default Not Applicable

Examples value = app.ActiveNAWindow.WindowNumber

C++ Syntax HRESULT (long* windowNumber);
Interface INAWindow

Write/Read About Arranging Windows

WindowState Property

Description Sets or returns the window setting of Maximized, Minimized, or Normal.
To arrange all of the windows, use app.ArrangeWindows.

 VB Syntax object.WindowState = value

238

Variable (Type) - Description
object An Application (object) - main window

 or
 A NaWindow (object) - data windows

value (enum NAWindowStates) - The window state. Choose from:
 0 - naMinimized - Minimizes the window to an Icon on the lower toolbar
 1 - naMaximized - Maximizes the window
 2 - naNormal - changes the window size to the user defined setting
(between Max and Min).

Return Type Long Integer
Default naMaximized

app.WindowState = naMinimized ’changes the Network Analyzer
application window to an icon. -Write
 win.WindowState = naNormal ’changes the window defined by the win
object variable to user defined settings. -Write

Examples

winstate = app.WindowState ’Read

C++ Syntax HRESULT get_WindowState(tagNAWindowStates *pVal)

 HRESULT put_WindowState(tagNAWindowStates newVal)
Interface INAWindow

 IApplication

Port Extension Object
Port Extensions Object

Description
Contains the methods and properties that control Port Extensions.
Methods
None
Property Description
Input A Sets the Input A extension value.
Input B Sets the Input B extension value.
Port 1 Sets the Port 1 extension value.
Port 2 Sets the Port 2 extension value.
State Turns Port Extensions ON and OFF.

Write/Read About Port Extensions

InputA Property

Description Sets a Port Extension value for Receiver A
 VB Syntax portExt.InputA = value

Variable (Type) - Description
portExt A Port Extension (object)
value (double) - Port Extension value in seconds. Choose any number

239

between -10 and 10
Return Type Double
Default 0

portExt.InputA = 10e-6 ’WriteExamples
inA = portExt.InputA ’Read

C++ Syntax HRESULT get_InputA(double *pVal)

 HRESULT put_InputA(double newVal)
Interface IPortExtension

Write/Read About Port Extensions

InputB Property

Description Sets the Port Extension value for Receiver B
 VB Syntax portExt.InputB = value

Variable (Type) - Description
portExt A Port Extension (object)
value (double) - Port Extension value in seconds. Choose any number

between -10 and 10
Return Type Double
Default 0

portExt.InputB = 10e-6 ’WriteExamples
inB = portExt.InputB ’Read

C++ Syntax HRESULT get_InputB(double *pVal)

 HRESULT put_InputB(double newVal)
Interface IPortExtension

Write/Read About Port Extensions

Port1 Property

Description Sets a Port Extension value for Port 1
 VB Syntax portExt.Port1 = value

Variable (Type) - Description
portExt A Port Extension (object)
value (double) - Port Extension value in seconds. Choose any number

between -10 and 10
Return Type Double
Default 0

portExt.Port1 = 10e-6 ’WriteExamples
prt1 = portExt.Port1 ’Read

C++ Syntax HRESULT get_Port1(double *pVal)

 HRESULT put_Port1(double newVal)
Interface IPortExtension

240

Write/Read About Port Extensions

Port2 Property

Description Sets a Port Extension value for Port 2
 VB Syntax portExt.Port2 = value

Variable (Type) - Description
portExt A Port Extension (object)
value (double) - Port Extension value in seconds. Choose any number

between -10 and 10
Return Type Double
Default 0

portExt.Port2 = 10e-6 ’WriteExamples
prt2 = portExt.Port2 ’Read

C++ Syntax HRESULT get_Port2(double *pVal)

 HRESULT put_Port2(double newVal)
Interface IPortExtension

PowerLossSegments Collection

PowerLossSegments Collection

Description
A collection object that provides a mechanism for iterating through the segments of the power
loss table used in source power calibration.
For more information, see Collections in the Analyzer.

Methods Description
Add Adds a PowerLossSegment object to the collection.
Item Use to get a handle to a PowerLossSegment object in the collection.
Remove Removes an object from the collection.
Properties Description
Count Returns the number of objects in the collection.
Parent Returns a handle to the Parent object (SourcePowerCalibrator) of this collection.

Write-only About Source Power Cal

Add (PowerLossSegment) Method

Description Adds a PowerLossSegment to the PowerLossSegments collection.

To ensure predictable results, it is best to remove all segments before

241

defining a new list of segments. For each segment in the collection, do a
seg.Remove.

VB Syntax segs.Add (item [size])
Variable (Type) - Description
segs (object) - A PowerLossSegments collection (object)
item (variant) - Number of the new segment. If it already exists, a new

segment is inserted at the requested position.
size (long integer) - Optional argument. The number of segments to add,

starting with item. If unspecified, value is set to 1.
Return Type None
Default Not Applicable

Examples segs.Add 1, 4 ’Adds segments 1,2,3 and 4

C++ Syntax HRESULT Add(VARIANT index, long size);
Interface IPowerLossSegments

PowerLossSegment Object

PowerLossSegment Object

Description
Contains the properties describing a segment of the power loss table used in source power
calibration.
You can get a handle to one of these segments through the segments.Item Method of the
PowerLossSegments collection.

Methods
None
Properties Description
Frequency The frequency (Hz) associated with this segment.

Shared with the PowerSensorCalFactorSegment Object
Loss The loss value (dB) associated with this segment.
SegmentNumber Returns the number of this segment

Shared with the PowerSensorCalFactorSegment Object

Write / Read About Source Power Cal

Frequency Property

Description Sets or returns the frequency associated with a
PowerSensorCalFactorSegment
or
Sets or returns the frequency associated with a PowerLossSegment.

VB Syntax object.Frequency = value

242

Variable (Type) - Description
object (object) - PowerSensorCalFactorSegment or PowerLossSegment
value (double) – Frequency in units of Hz. This can be any non-negative value

(limited by the maximum value of double).
Return Type Double
Default 0

Examples seg.Frequency = 6e9 'Write

 freq = seg.Frequency 'Read

C++ Syntax HRESULT put_Frequency(double newVal);

HRESULT get_Frequency(double *pVal);
Interface IPowerSensorCalFactorSegment

IPowerLossSegment

Write / Read About Source Power Cal

Loss (Source Power Cal) Property

Description Sets or returns the loss value associated with a PowerLossSegment.
VB Syntax lossSeg.Loss = value
Variable (Type) - Description
lossSeg (object) - PowerLossSegment
value (double) – Loss value in dB. This can be any value between 0 and 200.
Return Type Double
Default 0

Examples lossSeg.Loss = 0.5 'Write

 lossVal = lossSeg.Loss 'Read

C++ Syntax HRESULT put_Loss(Double newVal);

HRESULT get_Loss(Double *pVal);
Interface IPowerLossSegment

Read-only About Segment Sweep

SegmentNumber Property

Description Returns the number of the current segment,
PowerSensorCalFactorSegment or PowerLossSegment object.

 VB Syntax seg.SegmentNumber

Variable (Type) - Description
seg (object) - A Segment, PowerSensorCalFactorSegment or

PowerLossSegment. Get a handle to the object by referring to the item in
the appropriate collection (Segments, CalFactorSegments or
PowerLossSegments).

Return Type Long Integer
Default Not Applicable

Examples segNum = seg.SegmentNumber 'returns the segment number -Read

243

C++ Syntax HRESULT get_SegmentNumber(long *pVal)
Interface ISegment

 IPowerSensorCalFactorSegment
 IPowerLossSegment

PowerSensor Object
PowerSensor Object

Description
Each power sensor connected to the power meter associated with Source Power Calibration will
have a PowerSensor object created to represent it. These PowerSensor objects reside in the
PowerSensors collection within the SourcePowerCalibrator object. You cannot directly create
PowerSensor objects, but can only retrieve existing ones from the PowerSensors collection.
The PowerSensorCalFactorSegment object is also accessed through the PowerSensor object.
These are accessed through the CalFactorSegments collection in the PowerSensor object.
Example
Dim powerCalibrator as SourcePowerCalibrator
 Dim powerSensor as PowerSensor
 Dim calFactorSegment as PowerSensorCalFactorSegment

 Set powerCalibrator = pna.SourcePowerCalibrator

 ’ Specify GPIB address of the power meter.
 powerCalibrator.PowerMeterGPIBAddress = 13

 ’ Each time the PowerSensors collection is accessed, the power meter is
queried to determine which channels have sensors attached. The
collection is updated accordingly.

 If powerCalibrator.PowerSensors.Count > 0
 ’ If channel B of the meter has a sensor attached but channel A does
not, then element 1 of the
 ’ collection is sensor B. Whenever channel A has a sensor, sensor A
will be element 1.
 Set powerSensor = powerCalibrator.PowerSensors(1)
 ’ Insert one new PowerSensorCalFactorSegment at the beginning of the
collection (index 1).

 powerSensor.CalFactorSegments.Add(1)
 ’ Assign our variable to refer to that object.
 Set calFactorSegment = powerSensor.CalFactorSegments(1)

 ’ Set property values for that object.
 calFactorSegment.Frequency = 300000
 ’ frequency in Hz
 calFactorSegment.CalFactor = 98
 ’ cal factor in percent

 End If

Methods
None

244

Properties Description
CalFactorsSegments (collection)
MinimumFrequency Minimum usable frequency (Hz) specified for this power sensor.
MaximumFrequency Maximum usable frequency (Hz) specified for this power sensor.
PowerMeterChannel Identifies which power sensor this object corresponds to (or which channel

of the power meter the sensor is connected to).
ReferenceCalFactor Reference cal factor (%) associated with this power sensor.

Write/Read About Source Power Cal

MaximumFrequency (Source Power Cal) Property

Description Maximum usable frequency specified for the power sensor.
 VB Syntax pwrSensor.MaximumFrequency = value

Variable (Type) - Description
pwrSensor (object) - A PowerSensor (object)
value (double) -Frequency in Hertz.
Return Type Double
Default 0

Examples Set powerCalibrator = pna.SourcePowerCalibrator

 powerCalibrator.PowerSensors(1).MaximumFrequency = 6e9 ’Write

 MaxFreq = powerCalibrator.PowerSensors(1).MaximumFrequency
’Read

C++ Syntax HRESULT put_MaximumFrequency(double newVal);

HRESULT get_MaximumFrequency(double *pVal);
Interface IPowerSensor

Write/Read About Source Power Cal

MinimumFrequency (Source Power Cal) Property

Description Minimum usable frequency specified for the power sensor.
 VB Syntax pwrSensor.MinimumFrequency = value

Variable (Type) - Description
pwrSensor (object) - A PowerSensor (object)
value (double) -Frequency in Hertz.
Return Type Double
Default 0

Examples Set powerCalibrator = pna.SourcePowerCalibrator

 powerCalibrator.PowerSensors(1).MinimumFrequency = 300e3 ’Write

 MinFreq = powerCalibrator.PowerSensors(1).MinimumFrequency ’Read

245

C++ Syntax HRESULT put_MinimumFrequency(double newVal);
HRESULT get_MinimumFrequency(double *pVal);

Interface IPowerSensor

Read-only About Source Power Cal

PowerMeterChannel Property

Description Identifies which channel of the power meter the power sensor is
connected to.

 VB Syntax chan = powerSensor.PowerMeterChannel

Variable (Type) - Description
chan (enum NAPowerAcquisitionDevice) – Power meter channel identifier

for sensor. Choose from:
0 – naPowerSensor_A
1 – naPowerSensor_B

pwrSensor (object) - A PowerSensor (object)
Return Type NAPowerAcquisitionDevice
Default Not Applicable

Examples Set pwrCal = pna.SourcePowerCalibrator

 meterChannel = pwrCal.PowerSensors(1).PowerMeterChannel

C++ Syntax HRESULT PowerMeterChannel(tagNAPowerAcquisitionDevice

*pSensor);
Interface IPowerSensor

Read-only About Source Power Cal

ReferenceCalFactor Property

Description Reference cal factor (%) associated with this power sensor. This property
and the CalFactorSegments collection are used to perform source power
calibration only if the power sensor does not contain cal factors in
EPROM (for example, HP/Agilent 848x sensors).

 VB Syntax powerSensor.ReferenceCalFactor = value

Variable (Type) - Description
pwrSensor (object) - A PowerSensor (object)
value (double) – Cal factor in units of percent. This can be any value between

1 and 150.
Return Type Double
Default 100

Examples Set powerCalibrator = pna.SourcePowerCalibrator

 powerCalibrator.PowerSensors(1).ReferenceCalFactor =
99 ’Write

RefFact = powerCalibrator.PowerSensors(1).ReferenceCalFactor 'Read

C++ Syntax HRESULT put_ReferenceCalFactor(double newVal);

246

 HRESULT get_ReferenceCalFactor(double *pVal);
Interface IPowerSensor

PowerSensorCalFactorSegment Object

PowerSensorCalFactorSegment Object

Description
Contains the properties describing a segment of a power sensor cal factor table.
You can get a handle to one of these segments through CalFactorSegments.Item(n)

Methods
None
Properties Description
Frequency The frequency (Hz) associated with this segment.

Shared with the PowerLossSegment Object
CalFactor The cal factor (%) associated with this segment.
SegmentNumber Returns the number of this segment

Shared with the PowerLossSegment Object

Write / Read About Source Power Cal

CalFactor Property

Description Sets or returns the cal factor value associated with a power sensor cal
factor segment.

VB Syntax calFactSeg.CalFactor = value
Variable (Type) - Description
powerCalibrator (object) - A PowerSensorCalFactorSegment (object)
value (double) – Cal factor in percent. Choose any value between 1 and 150
Return Type Double
Default 0

Examples calFactSeg.CalFactor = 98 'Write

 factor = calFactSeg.CalFactor 'Read

C++ Syntax HRESULT put_CalFactor(Double newVal);

HRESULT get_CalFactor(Double *pVal);
Interface IPowerSensorCalFactorSegment

PowerSensors Collection

247

PowerSensors Collection

Description
A collection object that provides a mechanism for iterating through the PowerSensor objects
which are connected to the power meter. Each time this collection object is accessed, the power
meter is queried to determine how many sensors are connected to it. The collection size and
order of objects is then adjusted accordingly before the requested method or property operation is
performed. The power meter is specified by using the PowerMeterGPIBAddress property of the
SourcePowerCalibrator object.
For more information about collections, see Collections in the Analyzer.

Methods Description
Item Use to get a handle to a PowerSensor object in the collection.
Properties Description
Count Returns the number of objects in the collection.
Parent Returns a handle to the Parent object (SourcePowerCalibrator) of this

collection.

SCPIStringParser Object

SCPIStringParser Object

Method Description
Parse Provides the ability to send a SCPI command from within the COM command.
Properties
None

Read-only

Execute Method

Description This method can be used with SCPI command :SYST:ERR? to convert scpi
errors into text.

 VB Syntax Scpi.Execute(SCPI_Command As String)

Variable (Type) - Description
scpi A ScpiStringParser (Object)
SCPI_Command (String) - Any valid SCPI command
Return Type String
Default Not Applicable

Examples Dim scpi As ScpiStringParser

Set scpi = app.ScpiStringParser
 scpi.Execute("SYST:PRES");
ErrorString = scpi.Execute("SYST:ERROr?");

C++ Syntax Execute([in] BSTR SCPI_Command,[out,retval] BSTR * pQueryResponse);
Interface IScpiStringParser2
Write-Read SCPI Command Tree

248

Parse Method

Description Executes a SCPI command.
 VB Syntax scpi.Parse ("SCPI command")

Variable (Type) - Description
scpi A ScpiStringParser (object)
SCPI command (string) - Any valid SCPI command
Return Type String
Default Not Applicable

Examples Dim scpi As ScpiStringParser

 Set scpi = app.ScpiStringParser
 Dim startfreq As Double
 startfreq = 100e6
 ’
 scpi.Parse ("Sens:Freq:Start " & startfreq)’Write
Dim str As String
 str = scpi.Parse ("Sens:Freq:Start?")’Read

C++ Syntax HRESULT Parse(BSTR SCPI_Command, BSTR *pQueryResponse)
Interface IScpiStringParser

SCPIStringParser2 Interface
IScpiStringParser2_Interface

Description
This interface extends the IScpiStringParser interface. It adds an improved command execution
function.

Methods Description
Execute Does not convert scpi errors. Use :SYST:ERR?
Properties Description
None

Segments Collection

Segments Collection

Description
A collection object that provides a mechanism for iterating through the sweep segments of a
channel. Sweep segments are a potentially faster method of sweeping the analyzer through only
the frequencies of interest. See Collections in the Analyzer

Methods Description
Add Adds an item to either the Segments collection.
Item Use to get a handle to a segment in the collection..
Remove Removes an item from a collection of objects.
Properties Description
Count Returns the number of items in a collection of objects.
IF Bandwidth
Option

Enables the IFBandwidth to be set on individual sweep segments.

Parent Returns a handle to the current naNetworkAnalyzer application..

249

Source Power
Option

Enables setting the Source Power for a segment.

Write-only About Segment Sweep

Add (segment) Method

Description Adds segments to the Segments collection, but does not turn the
segments ON.

VB Syntax segs.Add (item, [size])
segs A segments collection (object)
item (variant) Number of the new segment. If it already exists, a new segment

is inserted at the requested position.
size (long integer) Optional argument. The number of segments to add,

starting with item. If unspecified, value is set to 1.
Return Type None
Default None

Examples Segs.Add 1, 4 ’Adds segments 1,2,3,and 4. (does NOT automatically turn

segments ON)

C++ Syntax HRESULT Add(VARIANT index, long size);
Interface ISegments
Remarks To ensure predictable results, it is best to remove all segments before

defining a segment list. For each segment in the collection, do a
seg.Remove.

Write/Read About Segment Sweep

IFBandwidthOption Property

Description Enables the IFBandwidth to be set on individual sweep segments. This
property must be set True before seg.IFBandwidth = value is sent.
Otherwise, this command will be ignored.

 VB Syntax segs.IFBandwidthOption = value

Variable (Type) - Description
segs A Segments collection (object)
 value (boolean)

 True - Enables variable IFBandwidth setting for segment sweep
 False - Disables variable IFBandwidth setting for segment sweep

Return Type Boolean
Default False

segs.IFBandwidthOption = True ’WriteExamples
IFOption = IFBandwidthOption ’Read

C++ Syntax HRESULT get_IFBandwidthOption(VARIANT_BOOL *pVal)

 HRESULT put_IFBandwidthOption(VARIANT_BOOL newVal)
Interface ISegments

250

Write/Read About Source Power

SourcePowerOption Property

Description Enables the source power to be set on individual sweep segments. This
property must be set True before seg.TestPortPower = value is sent.
Otherwise, the test port power command will be ignored.

 VB Syntax segs.SourcePowerOption = state

Variable (Type) - Description
segs A Segments collection (object)
state (boolean)

 True (1) - Enables variable TestPortPower to be set segment sweep
 False (0) - Disables variable TestPortPower to be set segment sweep

Return Type Boolean
 True - Enabled
 False - Disabled

Default False

segs.SourcePowerOption = True ’WriteExamples
powerOption = SourcePowerOption ’Read

C++ Syntax HRESULT get_SourcePowerOption(VARIANT_BOOL *pVal)

 HRESULT put_SourcePowerOption(VARIANT_BOOL newVal)
Interface ISegments

Segment Object
Segment Object

Description
Contains the methods and properties that affect a sweep segment. You can get a handle to a
sweep segment through the segments collection.[segments.item(n).]

Note: All of these properties are shared with at least one of the following objects: Channel,
PowerSensorCalFactorSegment or PowerLossSegment.

Methods
None
Property Description
centerFrequency Sets or returns the center frequency of the segment.

Shared with the Channel Object
DwellTime Dwell time value.

Shared with the Channel Object
FrequencySpan Sets or returns the frequency span of the segment.

Shared with the Channel Object
IFBandwidth Sets or returns the IF Bandwidth of the segment.

Shared with the Channel Object
NumberOfPoints Sets or returns the Number of Points of the segment.

Shared with the Channel Object
SegmentNumber Returns the number of the current segment.
StartFrequency Sets or returns the start frequency of the segment.

251

Shared with the Channel Object
State Turns On or OFF a segment.
StopFrequency Sets or returns the stop frequency of the segment.

Shared with the Channel Object
TestPortPower Sets or returns the RF power level of the segment.

Shared with the Channel Object

Write-only About Segment Sweep
SetAllSegments Method

Description Uploads a segment table to the PNA replacing any existing segment table.

Segments must be ascending in frequency and non-overlapping. If they are
not, the segments are ’adjusted’ as they are from the front panel control. The
total number of points for all segments cannot exceed the PNA maximum for a
sweep.
See an example that creates a 2-dimensional array of Doubles of 7 x
numSegs+1 that contains the segment data. You can see from the comments
the order in which the segment elements are specified: index 0 is segment
state, index 4 is IFBW, and so forth.

 VB Syntax Seg.SetAllSegments (segdata)

Variable (Type) - Description
seg A Segment (Object)
segdata Variant or Double Array - Segment data

For VARIANT, the underlying type must be appropriate for the element:
 Boolean - segment on/off
 Integer - number of points
 Double - all other elements.

Return Type Not Applicable
Default Not Applicable

Examples See an example using this command

C++ Syntax SetAllSegments (VARIANT Segments);
Interface ISegments2

ISegments2 Interface
ISegments2 Interface

Description
This interface extends the Segment interface.
Methods Description
SetAllSegments Uploads a segment table to the PNA.
Properties Description
None

SourcePowerCalibrator Object
SourcePowerCalibrator Object

Description

252

This object is a child object of Application, and is a vehicle for performing source power
calibrations.

Method Description
AbortPowerAcquisition Aborts a source power cal acquisition sweep that is currently in

progress.
AcquirePowerReadings Initiates a source power cal acquisition.
ApplyPowerCorrectionValues Applies correction values after completing a source power cal

acquisition sweep.
SetCalInfo Specifies the type of source power calibration about to be

performed, and instrument state-related settings for which it is to be
performed.

Property Description
CalPower Specifies the power level that is expected at the desired reference

plane (input or output of the device-under-test).
PowerLossSegments (collection)
PowerMeterGPIBAddress Specifies the GPIB address of the power meter that will be

referenced by this SourcePowerCalibrator object.
PowerSensors (collection)
ReadingsPerPoint For purpose of averaging, specifies how many power readings are

taken at each frequency point (Averaging factor).
UsePowerLossSegments Specifies if subsequent calls to the AcquirePowerReadings method

will make use of the loss table (PowerLossSegments).
UsePowerSensorFrequencyLi
mits

Specifies if subsequent calls to the AcquirePowerReadings method
will make use of power sensor frequency checking capability.

Write-only About Source Power Cal

AbortPowerAcquisition Method

Description Aborts a source power cal acquisition sweep that is currently in progress.
 VB Syntax powerCalibrator.AbortPowerAcquisition

Variable (Type) - Description
powerCalibrator (object) - A SourcePowerCalibrator object
Return Type None
Default Not Applicable

Examples powerCalibrator.AbortPowerAcquisition

C++ Syntax HRESULT AbortPowerAcquisition();
Interface ISourcePowerCalibrator

Write-only About Source Power Cal

AcquirePowerReadings Method

Description Initiates a source power cal acquisition.
 VB Syntax powerCalibrator.AcquirePowerReadings device [,sync]

253

Variable (Type) - Description
powerCalibrator (object) - A SourcePowerCalibrator object

device (enum NAPowerAcquisitionDevice) The specific device (sensor on the
power meter) to be used for the acquisition. Choose from:
0 – naPowerSensor_A
1 – naPowerSensor_B

sync (boolean) Optional argument. If not specified, value is set to False.
Choose from:
True (1) – The method does not return until this acquisition has
completed (the program calling this method is halted while waiting for the
method to return).
False (0) – The method initiates an acquisition then returns immediately
(while the acquisition still proceeds). The program calling this method
can then perform other operations during the acquisition.

Return Type None
Default Not Applicable

Examples powerCalibrator.AcquirePowerReadings naPowerSensor_A, True

C++ Syntax HRESULT AcquirePowerReadings(tagNAPowerAcquisitionDevice

enumAcqDevice, VARIANT_BOOL bSync);
Interface ISourcePowerCalibrator

Write-only About Source Power Cal

ApplyPowerCorrectionValues Method

Description Applies the array of power correction values to the channel memory and

turns correction ON. Perform after completing a source power cal
acquisition sweep or after programmatic input of source power correction
values (see putSourcePowerCalData Method and
putSourcePowerCalDataScalar Method). If using these methods,
correction is not turned ON if the current number of points on the
channel is not equal to the number of values that were input.

 VB Syntax powerCalibrator.ApplyPowerCorrectionValues

Variable (Type) - Description
powerCalibrator (object) - A SourcePowerCalibrator object
Return Type None
Default Not Applicable

Examples powerCalibrator.ApplyPowerCorrectionValues

C++ Syntax HRESULT ApplyPowerCorrectionValues();
Interface ISourcePowerCalibrator

Write-only About Source Power Cal

SetCalInfo Method (for source power cals)

Description Specifies the technique to be used for the source power calibration about

to be performed, and the channel and source port for which it is to be

254

performed.
 VB Syntax powerCalibrator.SetCalInfo calMethod, channel, sourcePort, calPower

Variable (Type) - Description
powerCalibrator (object) - A SourcePowerCalibrator object

calMethod (enum NASourcePowerCalMethod) The method of gathering the
source power correction data.
0 – naPowerMeter (the only method currently supported)

channel (long integer) - Number of the PNA channel (not power meter channel)
on which the source power cal will be performed. If the channel doesn’t
already exist, it will be created.

sourcePort (long integer) - Port number on which the source power cal will be
performed.

calPower (double) - Specifies the power level that is expected at the desired
reference plane (input or output of DUT) following the source power cal.

Return Type None
Default Not Applicable

Examples powerCalibrator.SetCalInfo naPowerMeter, 1, 1, -10

C++ Syntax HRESULT SetCalInfo(tagNASourcePowerCalMethod calMethod, long

channel, long sourcePort, double calPower);
Interface ISourcePowerCalibrator

 Read-only About Source Power Cal

CalPower Property

Description Specifies the power level that is expected at the desired reference plane
(input or output of the device-under-test) following a source power
calibration.

 VB Syntax value = powerCalibrator.CalPower (chan, sourcePort)

Variable (Type) - Description
value (double) - Variable to store the returned Cal power value in dBm.
powerCalibrator (object) - A SourcePowerCalibrator object
chan (long integer) - Channel number of the PNA.
sourcePort (long integer) - Source port number
Return Type None
Default 0

Examples Set powerCalibrator = pna.SourcePowerCalibrator

 powerCalibrator.CalPower = -10 'Write

 power = powerCalibrator.CalPower 'Read

C++ Syntax HRESULT get_CalPower(long channel, long sourcePort, double *pVal);
Interface ISourcePowerCalibrator

Write / Read About Source Power Cal

255

PowerMeterGPIBAddress Property

Description Specifies the GPIB address of the power meter that will be referenced by
the SourcePowerCalibrator object.

VB Syntax powerCalibrator.PowerMeterGPIBAddress = value
Variable (Type) - Description
powerCalibrator (object) - A SourcePowerCalibrator (object)
value (long integer) – Power meter GPIB address. Choose any number

between 0 and 30.
Return Type Long integer
Default 13

Examples Set powerCalibrator = pna.SourcePowerCalibrator

 powerCalibrator.PowerMeterGPIBAddress = 13 'Write

 pwrMtrAddress = powerCalibrator.PowerMeterGPIBAddress 'Read

C++ Syntax HRESULT put_PowerMeterGPIBAddress(long newVal);

HRESULT get_PowerMeterGPIBAddress(long *pVal);
Interface ISourcePowerCalibrator

Write / Read About Source Power Cal

ReadingsPerPoint Property

Description For purpose of averaging during source power cal, specifies how many power
readings are taken at each frequency point (Averaging factor).

VB Syntax pwrCal.ReadingsPerPoint = value
Variable (Type) - Description
pwrCal (object) - A SourcePowerCalibrator (object)
value (long integer) – Number of power readings. Choose any number between 1

and 100.
Return Type Long Integer
Default 1

Examples Set powerCalibrator = pna.SourcePowerCalibrator

 powerCalibrator.ReadingsPerPoint = 2 'Write

 numReadings = powerCalibrator.ReadingsPerPoint 'Read

C++ Syntax HRESULT put_ReadingsPerPoint(long newVal);

HRESULT get_ReadingsPerPoint(long *pVal);
Interface ISourcePowerCalibrator

Write / Read About Source Power Cal

UsePowerLossSegments Property

Description Specifies if subsequent calls to the AcquirePowerReadings method will
make use of the loss table (PowerLossSegments).

256

 VB Syntax pwrCal.UsePowerLossSegments = value

Variable (Type) - Description
pwrCal (object) – A SourcePowerCalibrator (object)
value (boolean) -

False (0) – Do not use loss table
True (1) – Use loss table

Return Type Boolean
Default False

Examples Set powerCalibrator = pna.SourcePowerCalibrator

 powerCalibrator.UsePowerLossSegments = 1 'Write
 lossTableState = powerCalibrator.UsePowerLossSegments 'Read

C++ Syntax HRESULT put_UsePowerLossSegments(VARIANT_BOOL bState);

HRESULT get_UsePowerLossSegments(VARIANT_BOOL *bState);
Interface ISourcePowerCalibrator

Write / Read About Source Power Cal

UsePowerSensorFrequencyLimits Property

Description Specifies if subsequent calls to the AcquirePowerReadings method will
observe frequency values of the MinimumFrequency and
MaximumFrequency properties.

 VB Syntax pwrCal.UsePowerSensorFrequencyLimits = value

Variable (Type) - Description
pwrCal (object) – A SourcePowerCalibrator (object)
value (boolean) -

False (0) – Do not use power sensor frequency limits. An acquisition will
use just one power sensor for the entire sweep, regardless of frequency.
True (1) – Use power sensor frequency limits. A requested acquisition
will only succeed for those frequency points which fall between the
MinimumFrequency and MaximumFrequency values of that
PowerSensor. An acquisition will pause in mid-sweep if the frequency is
about to exceed the MaximumFrequency value. When the sweep is
paused in this manner, a sensor connected to the other channel input of
the power meter can be connected to the measurement port in place of
the previous sensor, and then the sweep completed by another call to
AcquirePowerReadings. However, the MaximumFrequency specified for
the second sensor would need to be sufficient for the sweep to complete.

Return Type Boolean
Default False (0)

Examples Set powerCalibrator = pna.SourcePowerCalibrator

 powerCalibrator.UsePowerSensorFrequencyLimits = 1 'Write
 FreqCheck = powerCalibrator.UsePowerSensorFrequencyLimits 'Read

C++ Syntax HRESULT put_UsePowerSensorFrequencyLimits(VARIANT_BOOL

bState);
HRESULT get_UsePowerSensorFrequencyLimits(VARIANT_BOOL
*bState);

Interface ISourcePowerCalibrator

257

Trace Object

Trace Object

Description
The Trace object takes measurement data and control how the data is painted on the display.
You can control scale, reference position, and reference line from the Trace Object.

Methods Description
Autoscale Autoscales the trace or all of the traces in the selected window.

Shared with the NAWindow Object
Property Description
Name Sets or returns the trace name
ReferencePosition Sets or returns the Reference Position of the active trace.
ReferenceValue Sets or returns the value of the Y-axis Reference Level of the active trace.
YScale Sets or returns the Y-axis Per-Division value of the active trace.

Write/Read About Traces

Name (trace) Property

Description Sets or returns the name of the Trace. Use the trace name to identify the
trace and refer to the trace in the collection.
Note: This is the same name as meas.Name; when one changes, the
other changes.

 VB Syntax trac.Name = value

Variable (Type) - Description
trac A Trace (object)
value (String) Trace name
Return Type String
Default "CH1_S11_1" - name of the default measurement

trace.Name = "myTrace" ’WriteExamples
traceName = Name.Trace ’Read

C++ Syntax HRESULT put_Name(BSTR name)

 HRESULT get_Name(BSTR *name)
Interface ITrace

Write/Read About Reference Position

ReferencePosition Property

Description Sets or returns the Reference Position of the active trace.

258

 VB Syntax trce.ReferencePosition = value

Variable (Type) - Description
trce A Trace (object)
value (double) - Reference position on the screen measured in horizontal

graticules from the bottom of the screen. Choose from any number
between: 0 and 10.

Return Type Double
Default 0

meas.ReferencePosition = 5 ’Middle of the screen -WriteExamples
rpos = meas.ReferencePosition -Read

C++ Syntax HRESULT get_ReferencePosition(double *pVal)

 HRESULT put_ReferencePosition(double newVal)
Interface ITrace

Write/Read About Reference Level

ReferenceValue Property

Description Sets or returns the value of the Y-axis Reference Level of the active
trace.

 VB Syntax trce.ReferenceValue = value

Variable (Type) - Description
trce A Trace (object)
value (double) - Reference Value. Units and range depend on the current data

format.
Return Type Double
Default Not applicable

meas.ReferenceValue = 0 ’WriteExamples
rlev = meas.ReferenceValue ’Read

C++ Syntax HRESULT get_ReferenceValue(double *pVal)

 HRESULT put_ReferenceValue(double newVal)
Interface ITrace

Write/Read About Scale

YScale Property

Description Sets or returns the Y-axis Per-Division value of the active trace.
 VB Syntax trace.YScale = value

Variable (Type) - Description
trace A Trace (object)
value (double) - Scale /division number. Units and range depend on the current

data format.
Return Type Double
Default 10 (db)

259

trac.YScale = 5 ’WriteExamples
yscl = trac.YScale ’Read

C++ Syntax HRESULT get_YScale(double *pVal)

 HRESULT put_YScale(double newVal)
Interface ITrace

Traces Collection

Traces Collection

Description
Child of the Application Object. A collection that provides a mechanism for getting a handle to a
trace or iterating through the traces in a window.

Methods Description
Item Use to get a handle to a trace
Properties Description
Count Returns the number of traces in the collection.
Parent Returns a handle to the current Application.

Transform Object
Transform Object

Description
Contains the methods and properties that control Time Domain transforms.

Methods Description
SetFrequencyLowPass Sets low frequencies for low pass.
Property Description
Center Sets or returns the Center time.

Shared with the Gating Object
ImpulseWidth Sets or returns the Impulse Width of Time Domain transform windows.
KaiserBeta Sets or returns the Kaiser Beta of Time Domain transform windows.
Mode Sets the type of transform.
Span Sets or returns the Span time.

Shared with the Gating Object
Start Sets or returns the Start time.

Shared with the Gating Object
State Turns an Object ON and OFF.
StepRiseTime Sets or returns the Rise time of the stimulus in Low Pass Step Mode.
Stop Sets or returns the Stop time.

Shared with the Gating Object

260

Write-only About Time Domain

SetFrequencyLowPass Method

Description Set the start frequencies when trans.Mode = LowPass.
 VB Syntax trans.SetFrequencyLowPass

Variable (Type) - Description
trans A Transform (object)
Return Type Not Applicable
Default Not Applicable

Examples trans.SetFrequencyLowPass

C++ Syntax HRESULT SetFrequencyLowPass(void)
Interface ITransform

Write/Read About Time Domain

ImpulseWidth Property

Description Sets or returns the Impulse Width of Time Domain transform windows
 VB Syntax trans.ImpulseWidth = value

Variable (Type) - Description
trans A Transform (object)
value (double) - Impulse Width in seconds. Range of settings depends on the

frequency range of your analyzer.
Return Type Double
Default .98 / Default Span

trans.ImpulseWidth = 200e-12 ’sets the Impulse width of a transform window -
Write

Examples

IW = trans.ImpulseWidth ’Read

C++ Syntax HRESULT get_ImpulseWidth(double *pVal)

 HRESULT put_ImpulseWidth(double newVal)
Interface ITransform

Write/Read About Time Domain

KaiserBeta Property

Description Sets or returns the Kaiser Beta of Time Domain transform windows
 VB Syntax trans.KaiserBeta = value

Variable (Type) - Description
trans A Transform (object)
value (single) - Kaiser Beta. Choose any number between 0 and 13.
Return Type Single
Default 0

261

trans.KaiserBeta = 6 ’sets the Kaiser Beta of a transform window -WriteExamples
KB = trans.KaiserBeta ’Read

C++ Syntax HRESULT get_KaiserBeta(float *pVal)

 HRESULT put_KaiserBeta(float newVal)
Interface ITransform

Write/Read About Time Domain

Mode Property

Description Sets the type of transform.
 VB Syntax trans.Mode = value

Variable (Type) - Description
trans A Transform (object)
value (enum NATransformMode) - Choose from:

0 - naTransformBandpassImpulse
 1 - naTransformLowpassImpulse
 2 - naTransformLowpassStep

Return Type NATransformMode
Default 0 - naTransformBandpassImpulse

trans.Mode = naTransformLowpassStep ’WriteExamples
transmode = trans.Mode ’Read

C++ Syntax HRESULT get_Mode(tagNATransformMode *pVal)

 HRESULT put_Mode(tagNATransformMode newVal)
Interface ITransform

Write/Read About Time Domain

StepRiseTime Property

Description Sets or returns the Rise time of the stimulus in Low Pass Step Mode.
 VB Syntax trans.StepRiseTime = value

Variable (Type) - Description
trans A Transform (object)
value (double) - Rise time in seconds. Choose any number between 5.0e-13 and

1.63e-14.
Return Type Double
Default 0

trans.StepRiseTime = 1.0e-14 ’sets the step rise time to 100 psec. -WriteExamples
rt = trans.StepRiseTime ’Read

C++ Syntax HRESULT get_StepRiseTime(double *pVal)

 HRESULT put_StepRiseTime(double newVal)
Interface ITransform

262

COM Examples
Agilent VEE Example

Application Configuration
For this example use Agilent VEE version 6.0 or above which contains the Variant data type used
to transfer data from the PNA. The type library for the PNA should be referenced in the Agilent
VEE development environment.
Using the Agilent VEE Object Browser the developer can see the classes and methods which are
available for development of applications for the PNA Series analyzer.

Application Code
There is a runtime version of Agilent VEE that may be used if the application has been saved as
“runtime”. A free version of Agilent VEE can be found on the following web site:
http://www.agilent.com/find/vee/. The application may be run on a PC or on the PNA Series
analyzer.
The application file is located at http://agilent.com/find/pna_applications.

C++ Example

The following example uses the smart pointer created by Microsoft Visual Studio. The calls to
CoInitialize and CoUninitialize open and close the COM libraries.
Also notice that the pointers local to the main routine are explicitly released. When smart pointers
go out of scope, they will perform this duty implicitly. However, we are calling CoUninitialize
before they have the chance to be destroyed, so we are obliged to release them.

// An example program to illustrate the use of #import to bind to the
 // PNA type library.
 //
 #include "stdafx.h"
 #include "stdio.h"
 #include "math.h"

 ///
 // import the network analyzer type library
 ///
 #import "C:\Program Files\Common Files\Agilent\Pna\835x.tlb"
no_namespace, named_guids
 ///
 // include the error definitions for the PNA so we can implement
 // error handling.
 ///
 #include "C:\Program Files\Common
Files\Agilent\Pna\errorsystemmessage.h"

 IApplicationPtr pNA; // top level application pointer
 float fScalarData [1601]; // global buffer for data retrieval
 float fScalarData2[1601];

 DWORD dwCookie;

 ///
 // SetupChannel:
 //
 // input: pointer to the channel

263

 //
 // function: sets properties on the channel
 ///
 void SetupChannel(IChannelPtr pChannel)
 {
 pChannel->put_StartFrequency(1.2E9);
 pChannel->put_StopFrequency (4.2E9);
 pChannel->put_NumberOfPoints (201);

 }

 ///
 // AcquireData:
 //
 // input: pointer to the channel
 //
 // function: single sweeps the channel
 ///
 void AcquireData(IChannelPtr pChannel)
 {
 pChannel->Single(TRUE);
 }

 ///
 // ReadData:
 //
 // input: pointer to the Measurement object
 //
 // function: reads data from the measurment’s formatted
 // result data buffer
 ///
 void ReadScalarData(IMeasurementPtr pMeas)
 {
 IArrayTransferPtr pDataTransfer;
 pDataTransfer = pMeas;
 long numVals = 1601;
 float* pData = fScalarData;

 if(pDataTransfer){

 pDataTransfer->getScalar(naMeasResult, naDataFormat_LogMag,
&numVals, pData);

 for (int i = 0; i < numVals; i++)
 printf("%d\t%f\n",i,pData[i]);
 }
 TCHAR msg[100];
 BSTR param;
 pMeas->get_Parameter(¶m);
 swprintf(msg,L"Review %s data",param);
 MessageBox(NULL,msg,L"User Message",0);
 ::SysFreeString(param);
 }

 void ReadComplexData(IMeasurementPtr pMeas)
 {
 IArrayTransferPtr pDataTransfer;
 pDataTransfer = pMeas;
 long numVals = 1601;
 float* pReal= fScalarData;

264

 float* pImag = fScalarData2;

 if(pDataTransfer){

 pDataTransfer->getPairedData(naRawData, naRealImaginary, &numVals,
pReal, pImag);

 for (int i = 0; i < numVals; i++)
 printf("%d\t%f\t%f\n",i,pReal[i], pImag[i]);
 }
 TCHAR msg[100];
 BSTR param;
 pMeas->get_Parameter(¶m);
 swprintf(msg,L"Review %s data",param);
 MessageBox(NULL,msg,L"User Message",0);
 ::SysFreeString(param);
 }
 ///
 // PutData:
 //
 // input: pointer to the Measurement object
 //
 // function: writes data to the measurment’s raw data
 // buffer
 ///
 void PutData(IMeasurementPtr pMeas)
 {
 IArrayTransferPtr pDataTransfer;
 pDataTransfer = pMeas;
 long numVals = 201;

 if(pDataTransfer){

 NAComplex* pComplex = new NAComplex[numVals];

 pComplex[0].Im = 0;
 pComplex[0].Re = 1;
 for (int i = 1; i < numVals; i++)
 {
 pComplex[i].Im = (float)sin(i)/i;
 pComplex[i].Re = (float)cos(i)/i;
 }

 pDataTransfer->putNAComplex(naRawData, numVals, pComplex,
naDataFormat_Polar);
 delete [] pComplex;
 }
 }

 ///
 // printError
 ///
 void printError(HRESULT hr)
 {
 BSTR text;

 hr = pNA->get_MessageText ((NAEventID) hr, &text);
 MessageBox(NULL,text,L"Network Analyzer error",0);
 ::SysFreeString(text);
 }

265

 ///
 // main
 ///
 int main(int argc, char* argv[])
 {
 HRESULT hr;
 const long channel1 = 1;
 const long window1 = 1;
 const long srcport = 1;
 IMeasurementPtr pMeasurement;
 IChannelPtr pChannel;

 // initialize COM libraries
 CoInitialize(NULL);

 try {
 pNA = IApplicationPtr("AgilentPNA835x.Application.1");

 pNA->put_Visible(TRUE);
 pNA->Reset();

 pNA->CreateMeasurement (channel1, "S21",srcport, 5);
 hr = pNA->get_ActiveChannel(&pChannel);

 if (SUCCEEDED (hr))
 {
 SetupChannel(pChannel);
 AcquireData(pChannel);
 }

 hr= pNA->get_ActiveMeasurement(&pMeasurement);
 if (SUCCEEDED(hr))
 {
 pMeasurement->put_Format(naDataFormat_Polar);
 ReadScalarData(pMeasurement);
 ReadComplexData(pMeasurement);
 PutData(pMeasurement);
 }
 if (FAILED(hr))
 {
 printError(hr);
 }

 // make sure to release the remaining pointers
 // before calling CoUninitialize

 pMeasurement.Release();
 pChannel.Release();
 pNA.Release();
 }
 catch (_com_error err)
 {
 printError(err.Error());
 }

 CoUninitialize();
 return 0;
 }

266

ECAL Confidence Check

This Visual Basic program:
• Initializes the PNA objects.
• Performs a complete ECAL confidence check

Before using this code:
• The active channel must contain an S11 measurement with a 1-port or N-port calibration
• Prepare a form with two buttons named cmdRun and cmdQuit

Private oPNA As AgilentPNA835x.Application

Private oChan As Channel

Private oCal As Calibrator

Private oMeas As Measurement

Private Sub cmdRun_Click()

Dim iMeasIndex As Integer

Set oPNA = CreateObject("AgilentPNA835x.Application", "MachineName")

Set oChan = oPNA.ActiveChannel

Set oCal = oChan.Calibrator

iMeasIndex = 1

’ Loop through measurements until an S11 on the active channel

’ is found, or the end of the measurement collection is reached.

Do

 Set oMeas = oPNA.Measurements(iMeasIndex)

 If oMeas.Parameter = "S11" And _

 oMeas.channelNumber = oChan.channelNumber Then Exit Do

 iMeasIndex = iMeasIndex + 1

 If iMeasIndex > oPNA.Measurements.Count Then

 MsgBox "No S11 measurement found on the active channel." _

 & " Create an S11 measurement, then try again."

 Exit Sub

 End If

Loop

’ Set up trace view so we are viewing only the data trace.

oMeas.View = naData

’ Acquire the S11 confidence check data from ECal Module A

’ into the memory buffer.

267

oCal.AcquireCalConfidenceCheckECAL "S11", naECALModule_A

’ Turn on trace math so the trace shows data divided by memory.

’ You can be confident the S11 calibration is reasonably good if

’ the displayed trace varies no more than a few tenths of a dB

’ from 0 dB across the entire span.

oMeas.TraceMath = naDataDivMemory

End Sub

Sub cmdQuit_Click()

’ Turn off trace math

’ in case someone clicks Quit without having clicked Run

If oMeas <> Nothing Then oMeas.TraceMath = naDataNormal

’ Conclude the confidence check to set the ECal module

’ back to it’s idle state.

If oCal <> Nothing Then oCal.DoneCalConfidenceCheckECAL

’ End the program

 End

End Sub

Intro to Examples

COM CalSet program examples using C++

• Get example, cycles through the calsets collection, printing values from each error term
buffer.

• Put example, creates a calset and a buffer using SafeArrayCreate.
• Put and Get example, creates a calset, writes a buffer to it and reads it back.

Get example
This example cycles through the calsets collection, printing values from each error term buffer.
The example uses the methods GetErrorTermList2 and GetErrorTermByString. The methods
GetStandardsList2 and GetStandardByString are used similarly.
#include "stdafx.h"
#include "atlbase.h"
using namespace std;
#import "C:\Program Files\Agilent\Network Analyzer\835x.tlb"
raw_interfaces_only, named_guids, no_namespace
inline void HR(HRESULT hr)
{
if (FAILED(hr))
throw hr;
}
int main()
{
CoInitialize(NULL);
CComPtr spPNA;
if (FAILED(CoCreateInstance(CLSID_Application, NULL, CLSCTX_SERVER,
IID_IApplication, (void**)&spPNA)))
{
MessageBox(NULL, "could not create PNA","",0);
return 1;
}
try {

268

long setCount;
CComBSTR unfiltered("");
// ** initialize interface handles
CComPtr spMgr;
HR(spPNA->GetCalManager(&spMgr));
CComPtr spSets;
HR(spMgr->get_CalSets(&spSets)); // Get the calset collection
HR(spSets->get_Count(&setCount));
// ** loop through the collection
for (int i = 1; i <= setCount ; i++)
{
CComVariant itemNum(i);
CComPtr spSet;
CComQIPtr spSet2;
HR(spSets->Item(itemNum, &spSet));
HR(spSet->QueryInterface(&spSet2));

VARIANT buflist;
HR(spSet2->GetErrorTermList2(0, unfiltered, &buflist));

// ** loop through all the error term buffers in the calset
VARIANT* pvStrings;
HR(SafeArrayAccessData(buflist.parray, (void**)&pvStrings));
for (int bufNum = 0; bufNum < buflist.parray->rgsabound[0].cElements;
bufNum++)
{
VARIANT vOut;
BSTR bufName = pvStrings[bufNum].bstrVal;
HR(spSet2->GetErrorTermByString(0, bufName, &vOut));
cout << "\n" << (LPCTSTR) CString(bufName) << "\n";
if (vOut.parray->cDims != 2) throw 1;
long indices[2];
char formatted[100];
int maxpts = vOut.parray->rgsabound[1].cElements;
int maxparts = vOut.parray->rgsabound[0].cElements;
for (int pt = 0; pt < maxpts; pt++)
{

indices[0] = pt;
indices[1] = 0;
VARIANT valReal, valImag;
SafeArrayGetElement(vOut.parray, indices, &valReal);
indices[1]++;
SafeArrayGetElement(vOut.parray, indices, &valImag);

sprintf(formatted, "[%d]: %f\t%f\n",pt, valReal.fltVal, valImag.fltVal);
cout << formatted;
}
}
HR(SafeArrayUnaccessData(buflist.parray));
}
}
catch (HRESULT hr)
{
CComBSTR bstrMsg;
spPNA->get_MessageText((enum NAEventID) hr, &bstrMsg);
}
spPNA.Release();
CoUninitialize();
return 0;
}

269

Put example
This example creates a calset and a buffer using SafeArrayCreate.
The example uses the methods PutErrorTermByString method to put the buffer in the calset.
The PutStandardByString is a similarly used method.

// PutErrorTermByString.cpp : Defines the entry point for the console
application.
//
#include "stdafx.h"
#include "atlbase.h"

#import "C:\Program Files\Agilent\Network Analyzer\835x.tlb"
raw_interfaces_only, named_guids, no_namespace
inline void HR(HRESULT hr)
{
if (FAILED(hr))
throw hr;
}
using namespace std;
int main()
{
CoInitialize(NULL);
CComPtr spPNA;
if (FAILED(CoCreateInstance(CLSID_Application, NULL, CLSCTX_SERVER,
IID_IApplication, (void**)&spPNA)))
{
MessageBox(NULL, "could not create PNA","",0);
return 1;
}
try {
HR(spPNA->Preset());

// generate a safearray of floats

SAFEARRAYBOUND bounds[2];
 bounds[0].cElements = 201;
bounds[0].lLbound = 0;
bounds[1].cElements = 2;
bounds[1].lLbound = 0;
float realPart = 1.0;
float imagPart = 0.0;
long indices[2];
long maxPts = 201;
SAFEARRAY* psa = SafeArrayCreate(VT_R4, 2, bounds);
for (int pt = 0 ; pt < maxPts; pt++)
{
indices[0] = pt;
indices[1] = 0;
realPart += pt;
HR(SafeArrayPutElement(psa, indices, (void*)&realPart));
indices[1] = 1;
HR(SafeArrayPutElement(psa, indices, (void*)&imagPart));
}
// wrap the array in Variant for IDispatch
VARIANT complexData;
complexData.vt = VT_ARRAY;
complexData.parray = psa;
// Create a calset and put the buffer.
CComPtr spMgr;
CComPtr spSet;

270

CComQIPtr spSet2;
HR(spPNA->GetCalManager(&spMgr));
HR(spMgr->CreateCalSet(1, &spSet));
spSet2 = spSet;
CComBSTR bufName("MyPhonyCalSet:MyPhonyBuffer");
HR(spSet2->PutErrorTermByString(bufName, complexData));
HR(spSet2->Save());
}
catch (HRESULT hr)
{
CComBSTR bstrMsg;
spPNA->get_MessageText((enum NAEventID) hr, &bstrMsg);
MessageBox(NULL, (LPCTSTR)CString(bstrMsg), "Error",MB_OK);
}
spPNA.Release();
CoUninitialize();
return 0;
}

 Put and Get example for ICalData3
This example creates a calset, writes a buffer to it and reads it back. The example uses the
methods PutErrorTermComlexByString and GetErrorTermComlexByString methods. The
PutStandardComplexByString and GetStandardComplexByString methods are used
similarly.
--

#include "stdafx.h"
#include "atlbase.h"
#include <iostream>
#include <vector>

#import "C:\Program Files\Agilent\Network Analyzer\835x.tlb"
raw_interfaces_only, named_guids, no_namespace
inline void HR(HRESULT hr)
{
if (FAILED(hr))
throw hr;
}
using namespace std;
int main()
{
CoInitialize(NULL);
CComPtr spPNA;
if (FAILED(CoCreateInstance(CLSID_Application, NULL, CLSCTX_SERVER,
IID_IApplication, (void**)&spPNA)))
{
MessageBox(NULL, "could not create PNA","",0);
return 1;
}
try {
HR(spPNA->Preset());

// generate some data for our calset buffer
std::vector<float> real(201,0);
std::vector<float> imag(201,0);
for (int i = 0; i < real.size(); i++)
{
real[i] = (float)i;
}

271

// needed interface pointers
CComPtr <spMgr>;
CComPtr <spSet>;
CComQIPtr <spCalData3>;
// Create a calset
HR(spPNA->GetCalManager(&spMgr));
HR(spMgr->CreateCalSet(1, &spSet));
spCalData3 = spSet;
// insert a buffer
CComBSTR bufName("Example Cal Set:Bogus Data Buffer");
HR(spCalData3->PutErrorTermComplexByString(bufName, real.size(),
&real[0], &imag[0]));
HR(spSet->Save());
// read the buffer back out
long pts = real.size();
real.assign(pts,0);
imag.assign(pts,0);
HR(spCalData3->GetErrorTermComplexByString(0, bufName, &pts, &real[0],
&imag[0]));
}
catch (HRESULT hr)
{

CComBSTR bstrMsg;
spPNA->get_MessageText((enum NAEventID) hr, &bstrMsg);
MessageBox(NULL, (char*)_bstr_t(bstrMsg.m_str), "Error",MB_OK);
}
spPNA.Release();
CoUninitialize();
return 0;
}

COM Events Example

This Visual Basic program shows how to monitor the end of sweep.
The program will set sweep time to various amounts and BEEPs when sweep is
completed. This method allows other processes to continue while waiting for end-of-
sweep. This program stops after 10 loops.

Note: To avoid Permission Denied problems, this should be run on the PNA and not a
PC. To run it from a PC both units must be "trusted" and on the same
domain/workgroup.

Option Explicit
 Dim na As AgilentPNA835x.Application
 Dim WithEvents naEvnt As AgilentPNA835x.Application
 Dim ch As AgilentPNA835x.Channel
 Dim sweepComplete As Boolean

 Private Sub Form_Load()

 Dim N As Integer
 Set na = CreateObject("AgilentPNA835x.application")
 na.preset

272

 Set ch = na.ActiveChannel
 na.DisallowAllEvents ’ Turn off all events
 Set naEvnt = na ’ Enable event interrupts
 Do
 N = N + 1 ’ Loop counter
 ch.sweepTime = 1 + (Rnd * 9) ’ Set random sweep-time from 1-10 sec
 sweepComplete = False
 ch.Single False ’ Trigger sweep
 naEvnt.AllowEventCategory naEventCategory_CHANNEL, True ’ Enable Channel
event
 Do
 DoEvents ’ Allows other processes to continue
 Loop Until sweepComplete = True
 naEvnt.AllowEventCategory naEventCategory_CHANNEL, False ’ Disable event until
ready for next one
 Beep ’ Do end-of-sweep processing here;

 Loop Until N > 10
 End

 End Sub

 Private Sub naEvnt_OnChannelEvent(ByVal eventID As Variant, ByVal chNumber As
Variant)
 ’ In this example we don’t care about the channel info
 If eventID = naEventID_CHANNEL_TRIGGER_COMPLETE Then sweepComplete =
True
 End Sub

Intro to Examples

Getting Trace Data from the Analyzer

This Visual Basic program:
• Retrieves Scalar Data from the Analyzer and plots it.
• Retrieves Paired Data from the Analyzer and plots it.
• Retrieves Complex Data from the Analyzer and plots it.

To use this code, prepare a form with the following:
• Two MSCharts named MSChart1 and MSChart2
• Three buttons named GetScalar, GetPaired, GetComplex

Note: You can get MSChart in Visual Basic by clicking Project / Components / Microsoft Chart
Control

’Put this in a module
 Public dlocation As NADataStore
 Public numpts As Long
 Public fmt As NADataFormat
 Public app As Application
 Public measData As IArrayTransfer
 Public chan As Channel

273

Sub Form_Load()
 ’Change analyzerName to your analyzer’s full computer name
 Set app = CreateObject("AgilentPNA835x.Application", "analyzerName")

Set measData = app.ActiveMeasurement
 Set chan = app.ActiveChannel

 ’To pick a location to get the data from remove the comment from one of
these
 dlocation = naRawData
 ’dlocation = naCorrectedData
 ’dlocation = naMeasResult
 ’dlocation = naRawMemory
 ’dlocation = naMemoryResult

 ’setup MSChart1 and MSChart2
 ’right click on the chart and select:
 ’ - line chart
 ’ - series in rows
 End Sub

Sub GetComplex_Click()
 ReDim Data(numpts) As NAComplex
 Dim Real(201) AS Single
 Dim Imag(201) AS Single
 numpts = chan.NumberOfPoints

’You cannot change the format of Complex Data
 Call trigger
 ’get data
 measData.GetNAComplex dlocation, numpts, Data(0)
 ’plot data
 Dim i As Integer

 For i = 0 To numpts - 1
 Real(i) = Data(i).Re
 Imag(i) = Data(i).Im
 Next i
 MSChart1 = Real()
 MSChart2.Visible = True
 MSChart2 = Imag()
 Call Sweep
 End Sub

Sub GetPaired_Click()
 ReDim Real(numpts) As Single
 ReDim Imag(numpts) As Single
 numpts = chan.NumberOfPoints

’ To pick a format, remove the comment from one of these
 fmt = naLogMagPhase
 ’fmt = naLinMagPhase
 Call trigger
 ’Get data
 measData.getPairedData dlocation, fmt, numpts, Real(0), Imag(0)
 ’Plot Scalar
 MSChart1 = Real()
 MSChart2.Visible = True
 MSChart2 = Imag()

274

 Call Sweep
 End Sub

Sub GetScalar_Click()
 ReDim Data(numpts) As Single

numpts = chan.NumberOfPoints
 ’To pick a format remove the comment from one of these
 fmt = naDataFormat_LogMag
 ’fmt = naDataFormat_LinMag
 ’fmt = naDataFormat_Phase
 ’fmt = naDataFormat_Delay
 ’fmt = naDataFormat_Real
 ’fmt = naDataFormat_Imaginary
 Call trigger
 ’Get data
 measData.GetScalar dlocation, fmt, numpts, Data(0)
 ’Plot Data
 MSChart1 = Data()
 MSChart2.Visible = False
 Call Sweep
 End Sub

 Sub trigger()

’The analyzer sends continuous trigger signals
 app.TriggerSignal = naTriggerInternal
 ’The channel will only accept one, then go into hold
 ’Sync true will wait for the sweep to complete

sync=True

chan.Single sync
 End Sub

 Sub Sweep()
 ’The channel goes back to accepting all triggers
 chan.Continuous
 End Sub

Intro to Examples

Limit Line Testing with COM

This Visual Basic program:
• Turns off existing Limit Lines
• Establishes Limit Lines with the following settings:

• Frequency range - 4 GHz to 8 GHz
• Maximum value - (10dB)
• Minimum value - (-30dB)

• Turns on Lines, Testing, and Sound
To use this code, prepare a form with the following:

• None
Public limts As LimitTest
 Set limts = meas.LimitTest
 ’All Off
 For i = 1 To 20
 limts(i).Type = naLimitSegmentType_OFF

275

 Next i

 ’Set up Limit Lines
 limts(1).Type = naLimitSegmentType_Maximum
 limts(1).BeginResponse = 10
 limts(1).EndResponse = 10
 limts(1).BeginStimulus = 4000000000#
 limts(1).EndStimulus = 8000000000#
 limts(2).Type = naLimitSegmentType_Minimum
 limts(2).BeginResponse = -30
 limts(2).EndResponse = -30
 limts(2).BeginStimulus = 4000000000#
 limts(2).EndStimulus = 8000000000#

 ’Turn on Lines, Testing, and Sound
 limts.LineDisplay = 1
 limts.State = 1
 limts.SoundOnFail = 1

Intro to Examples

Upload Segment Table

This Visual Basic program:
• creates a 2-dimensional array of Doubles of 7 x numSegs+1for the segment table data
• uploads the data to the PNA

The comments indicate the order in which the segment elements are specified: Index 0 - segment
state, Index 4 is IFBW, and so forth.
Dim app As AgilentPNA835x.Application
 Dim chan As AgilentPNA835x.Channel
 Private Sub SegmentTest4_Click()
 Dim segs As AgilentPNA835x.Segments

 Const numSegs = 5 - 1 ’ 5 segments
 Set chan = app.ActiveChannel ’ Assumes that app is already set...
 Set segs = chan.Segments
 Dim segdata(6, numSegs)

 ’ Fill up the segments with appropriate values.
 For i = 0 To numSegs
 segdata(0, i) = True ’ segment state (active or not)
 segdata(1, i) = 500 ’Num Points
 segdata(2, i) = 1000000# + i * 1000# ’Start Freq
 segdata(3, i) = 1000000# + i * 1000# + 300# ’Stop Freq
 segdata(4, i) = 35000# ’ IFBW
 segdata(5, i) = 0# ’ Dwell Time
 segdata(6, i) = 0# ’ Power
 Next i

 ’ Push the segment data into the PNA
 segs.SetAllSegments segdata

 End Sub

Intro to Examples

Microsoft Excel Example

276

Application Configuration
Microsoft Office 2000 was used for this example. This version of Office contains Visual Basic for
Applications (VBA) which allows developers to attach Visual Basic Macros to Excel documents.
The type library for the PNA network analyzer should be referenced in the Visual Basic
development environment.

Application Code
The application code is contained below. The program inserts the data retrieved from the
analyzer into cells in the Excel document. The cells are then used to update a graph in the Excel
document. To run the application, open the document using Microsoft Excel. Enable macros
when prompted by the application. Once this is complete, the application will execute and update
the document. It can be run on a PC or the PNA analyzer.

Option Explicit
Dim app
 Dim chan
 Dim meas
 Dim result As Variant
 Dim i As Integer
 Dim num_points As Integer
Private Sub Workbook_Open()
’ Connect to the PNA application; change analyzerName to your analyzer’s
full computer name
Set app = CreateObject("AgilentPNA835x.Application", "analyzerName")
’ Reset the analyzer to instrument preset
 app.Reset
’ Create S11 measurement
 app.CreateMeasurement 1, "S11", 1
’ Set chan variable to point to the active channel
 Set chan = app.ActiveChannel
’ Set meas variable to point to the active measurement
 Set meas = app.ActiveMeasurement
’ Setup the channel for a single trigger
 chan.Hold True
 app.TriggerSignal = naTriggerManual
 chan.TriggerMode = naTriggerModeMeasurement
’ Make the PNA application visible
 app.Visible = True
’ Set channel parameters
 chan.NumberOfPoints = 11
 chan.StartFrequency = (1000000000#)
 chan.StopFrequency = (2000000000#)
’ Send a manual trigger to initiate a single sweep
 chan.Single True
’ Store the data in the "result" variable
 result = meas.GetData(naRawData,
 naDataFormat_LogMag)
’ Display the result
 num_points = chan.NumberOfPoints 14
For i = 0 To num_points - 1
 Sheet1.Cells(3 + i, 1) = result(i)
 Next
Set chan = Nothing
 app.Quit
End Sub

Intro to Examples

Microsoft Visual Basic Example

277

Application Configuration
The type library for the PNA should be referenced in the Visual Basic development environment.
Using the Visual Basic Object Browser the developer can see what classes and methods are
available for development of applications for the analyzer.

Application Code
The application code is contained below. To run the application, first generate the executable file.
Once this is complete, it can be copied and executed on the analyzer or run on the PC. The
application can also be run from the development environment.

Option Explicit
Dim app As AgilentPNA835x.Application
 Dim chan As AgilentPNA835x.Channel
 Dim meas As AgilentPNA835x.Measurement
 Dim result As Variant
 Dim i As Integer
 Dim num_points As Integer
 Dim message As String
Private Sub Main()
’ Connect to the PNA application; change analyzerName to your analyzer’s
full computer name
Set app = CreateObject("AgilentPNA835x.Application", "analyzerName")
’ Reset the analyzer to instrument preset
 app.Reset
’ Create S11 measurement
 app.CreateMeasurement 1, "S11", 1
’ Set chan variable to point to the active channel
 Set chan = app.ActiveChannel
’ Set meas variable to point to the active measurement
 Set meas = app.ActiveMeasurement
’ Setup the channel for a single trigger
 chan.Hold True
 app.TriggerSignal = naTriggerManual
 chan.TriggerMode = naTriggerModeMeasurement
’ Make the PNA application visible
 app.Visible = True
’ Set channel parameters
 chan.NumberOfPoints = 11
 chan.StartFrequency = (1000000000#)
 chan.StopFrequency = (2000000000#)
’ Send a manual trigger to initiate a single sweep
 chan.Single True
’ Store the data in the "result" variable
 result = meas.GetData(naRawData,
 naDataFormat_LogMag)
’ Display the result
 num_points = chan.NumberOfPoints
 For i = 0 To num_points - 1
 message = message & result(i) & vbCrLf
 Next
If MsgBox(message, vbOKOnly, "S11(dB) - VBS COM
 Example for PNA") Then
 Set chan = Nothing
 app.Quit
 End If
End Sub

Intro to Examples

278

Microsoft Visual Basic Script Example

Application Configuration
Some operating systems may require that the Visual Basic Scripting engine be installed before
running the application on a PC. To download a free copy of a Visual Basic Scripting engine, visit
the following web site: http://msdn.microsoft.com/scripting/

Application Code
The application code is contained below. To run the program, copy the text into a text editor such
as notepad and save the file with the “.vbs” extension. The “.vbs” extension will tell the operating
system to execute the code using the Visual Basic Scripting engine.
In order to run the application, double-click on the saved .vbs file. The application can be run on a
PC or on the PNA Series network analyzer.

Option Explicit
’ Shell objects
 Dim app
 Dim chan
 Dim meas
 Dim result
 Dim message
 Dim num_points
 Dim i
’ Connect to the PNA application; change analyzerName to your analyzer’s
full computer name
Set app = CreateObject("AgilentPNA835x.Application", "analyzerName")
’ Reset the analyzer to instrument preset
 app.Reset
’ Create S11 measurement
 app.CreateMeasurement 1, "S11", 1
’ Set chan variable to point to the active channel
 Set chan = app.ActiveChannel
’ Set meas variable to point to the active measurement
 Set meas = app.ActiveMeasurement
’ Setup the channel for a single trigger
 chan.Hold True
 app.TriggerSignal = 3
 chan.TriggerMode = 1
’ Make the PNA application visible
 app.Visible = True
 ’ Set channel parameters
 chan.NumberOfPoints = 11
 chan.StartFrequency = (1000000000)
 chan.StopFrequency = (2000000000)
’ Send a manual trigger to initiate a single sweep
 chan.Single True
’ Store the data in the "result" variable
 result = meas.GetData(0, 1)
’ Display the result
 num_points = chan.NumberOfPoints
 For i = 0 To num_points - 1
 message = message & result(i) & vbCRLF
 Next
if MsgBox(message, vbOKOnly, "S11(dB) - VBS COM
 Example for PNA") then
 Set chan = Nothing
 app.quit
end if

279

Intro to Examples

Microsoft Visual C++ Example

Application Configuration
Microsoft Visual C++ version 6 was used for this example. In order to perform this example,
create a new project in Microsoft Visual C++. Add a C++ file to the project and paste the following
code into the file. The path for the type library in the code below should be changed to reference
its location on the development PC.

Application Code
The application can be run on a PC or on the PNA.
#include "stdafx.h"

// import the Tsunami type library
 //--------------------------
 #import "C:\Program Files\Common Files\Agilent\Pna\835x.tlb"
 no_namespace, named_guids
 int main(int argc, char* argv[])
 {
 // interface pointers to retrieve COM interfaces
 IUnknown* pUnk = 0;
 IApplication* pNA = 0;
 IChannel* pChan = 0;
 IMeasurement* pMeas = 0;
 IArrayTransfer* pTrans = 0;
 int i, num_points = 0;
 float* pScalarData;
HRESULT hr;
// Initialize the COM subsystem
 CoInitialize(NULL);
// Create an instance of the network analyzer
 // Request the NA’s IUnknown interface
 hr = CoCreateInstance(CLSID_Application,0,
 CLSCTX_ALL,IID_IUnknown, (void**) &pUnk);
 if (!FAILED(hr)) {
// QueryInterface for the INetworkAnalyzer interface
 of the NetworkAnalyzer object
 hr = pUnk->QueryInterface(IID_IApplication,
 (void**)&pNA);
if (!FAILED(hr)) {
// Reset the analyzer to instrument preset
 pNA->Reset();
// Create S11 measurement
 pNA->CreateSParameter(1,1,1,1);
// Set pChan variable to point to the active
 channel
 pNA->get_ActiveChannel(&pChan);
if (pChan) {
// Set pMeas variable to point to the active
 measurement
 pNA->get_ActiveMeasurement(&pMeas);
if(pMeas) {
// Setup the channel for a single trigger
 pChan->Hold(true);
 pNA->TriggerSignal = naTriggerManual;
 pChan->TriggerMode =
 naTriggerModeMeasurement;
// Make the PNA application visible
 pNA->put_Visible(true);

280

// Set channel parameters
 pChan->NumberOfPoints = 11;
 pChan->StartFrequency = 1e9;
 pChan->StopFrequency = 2e9;
// Send a manual trigger to initiate a single
 sweep
 pChan->Single(true);
// QueryInterface for the IArrayTransfer
 interface of the NetworkAnalyzer object
 hr = pMeas->QueryInterface(IID_IArray
 Transfer, (void**)&pTrans);
if (!FAILED(hr)) {
// Store the data in the "result" variable
 num_points = pChan->NumberOfPoints;
 pScalarData = new float[num_points];
 pTrans->getScalar(naRawData, naData
 Format_LogMag, (long *)&num_points,
 pScalarData);
// Display the result
 printf("S11(dB) - Visual C++ COM
 Example for PNA\n\n");
 for (i = 0; i < num_points; i++)
 printf("%f\n",pScalarData[i]);
}
 }
 }
 }
pUnk->Release();
 pMeas->Release();
 pChan->Release();
 pTrans->Release();
 pNA->Release();
 }
 CoUninitialize();
 return 0;
 }

Intro to Examples

Microsoft Word Example

Application Configuration
Microsoft® Office 2000 was used for this example. This version of Office contains Visual Basic for
Applications (VBA) which allows developers to attach Visual Basic Macros to Word documents.
The type library for the PNA Series network analyzer should be referenced in the Visual Basic
development environment.

Application Code
The application code is contained below. The program inserts the data retrieved from the
analyzer into a table in a Word document. To run the application, open the document using
Microsoft Word. Enable the macros when prompted. Once this is complete, the application will
execute and update the document. The application can be run on a PC or the analyzer.

Option Explicit
Dim app
 Dim chan
 Dim meas
 Dim result As Variant

281

 Dim i As Integer
 Dim num_points As Integer
Private Sub Document_Open()
’ Connect to the PNA application; change analyzerName to your analyzer’s
full computer name
Set app = CreateObject("AgilentPNA835x.Application", "analyzerName")
’ Reset the analyzer to instrument preset
 app.Reset
’ Create S11 measurement
 app.CreateMeasurement 1, "S11", 1
’ Set chan variable to point to the active channel
 Set chan = app.ActiveChannel
’ Set meas variable to point to the active measurement
 Set meas = app.ActiveMeasurement
’ Setup the channel for a single trigger
 chan.Hold True
 app.TriggerSignal = naTriggerManual
 chan.TriggerMode = naTriggerModeMeasurement
’ Make the PNA application visible
 app.Visible = True
’ Set channel parameters
 chan.NumberOfPoints = 11
 chan.StartFrequency = (1000000000#)
 chan.StopFrequency = (2000000000#)
’ Send a manual trigger to initiate a single sweep
 chan.Single True
’ Store the data in the "result" variable
 result = meas.GetData(naRawData,
 naDataFormat_LogMag)
’ Display the result
 num_points = chan.NumberOfPoints
 For i = 0 To num_points - 1
 ThisDocument.Tables(1).Cell(i + 2, 2).Range = result(i)
 Next
Set chan = Nothing
 app.Quit
End Sub

Intro to Examples

National InstrumentsTM LabVIEW Example

Application Configuration
Use National Instruments™ Lab VIEW version 5.0 or above for this example. See the National
Instruments™ LabVIEW documentation for information on using ActiveX objects in the LabVIEW
development environment.

Application Code
National Instruments™ LabVIEW 5.0 or higher must be installed to run the application. The
application can be run on a PC or on the PNA Series analyzer.
The application file is located at http://agilent.com/find/pna_applications.

Learning about COM
Learning about COM

282

The following topics can help you learn more about controlling the PNA using COM.
� COM versus SCPI

� Configure for COM-DCOM Programming

� COM Fundamentals

� Getting a Handle to an Object

� COM Collections in the PNA

� COM Data Types

� Working with PNA Events

� Read and Write Calibration Data using COM

� C++ and the COM Interface

Configure for COM-DCOM Programming

Before developing or running a COM program, you should first establish communication between
your PC and the analyzer. This process is referred to as gaining Access to the analyzer. Then, to
work with the analyzer’s components, you should register the PNA type library on your PC.
� Access Concepts

� Access Procedures

� Register the Analyzer on Your PC

� Problems?

Note: After upgrading the Network Analyzer application, you must also copy the new type library
to your development PC to get access to new COM commands. See Register the analyzer on
your PC.

Other Topics about COM Concepts

Access Concepts
PNAs are shipped from the factory such that Everyone has permission to launch and access the
PNA application via COM/DCOM. The term Everyone refers to a different range of users
depending on whether the PNA is a member of a Domain or Workgroup (it must be one or the
other; not both). By default, the PNA is configured as members of a workgroup. Therefore,
Everyone includes only those users who have been given logon accounts on the PNA.

Note: DCOM (Distributed Component Object Model) refers to accessing the analyzer application
from a remote PC. COM refers to accessing the analyzer application from the analyzer PC.

Workgroup
A workgroup is established by the PNA administrator declaring the workgroup name and
declaring the PNA as a member of the workgroup. A workgroup does not require a network
administrator to create it or control membership.
Everyone includes only those users who have been given logon accounts on the PNA.
By default, the PNA is configured as members of a workgroup named WORKGROUP.

Note: To setup a logon account for a new user, see Additional Users.
 For DCOM access, the user’s account name and password must EXACTLY match their PC
logon account name and password.

Domain

283

A domain is typically a large organizational group of computers. Network administrators maintain
the domain and control which machines have membership in it.
Everyone includes those people who have membership in the domain. In addition, those with
logon accounts can also access the analyzer.

Summary
• A Workgroup requires no maintenance, but allows DCOM access to only those users with a log-on

account for the PNA.
• A Domain requires an administrator, but all members of the domain and those with logons to the

analyzer are allowed DCOM access to the PNA.
The next level of security is to allow only selected (not Everyone) domain and workgroup users
DCOM Access and Launch capability of the analyzer.

Access Procedures
Perform this procedure for the following:

• To allow only selected users (not everyone) remote Access and Launch capability to the analyzer.
Launch capability is starting the analyzer application if it is not already open.

• To verify that you have DCOM access to the analyzer.

Note: Before doing this procedure, you must first have a logon account on the PNA. See
Additional Users

Do the following for both Access and Launch capabilities:
1. On the PNA, click the Windows Start button
2. Click Run
3. In the Open: box, type dcomcnfg
4. Click OK
5. In the Distributed COM Configuration Properties window, Click on Agilent PNA Series in the

Applications list. Then click Properties... (button)
6. Click the Security tab

Access Capability
The following configures the PNA to grant specific users DCOM access to the PNA application:
in the Agilent PNA Series Properties dialog box:

1. Click Use custom access permissions
2. Click Edit next to (Use custom access permissions)
3. In Registry Value Permissions, select Everyone
4. Click Remove
5. Click Add
6. You could either select one or more of these groups to have access to the PNA, or specific users.

7. To give groups access, select the group from the list.
8. To give specific users access, click Show users or Members, then select the name from the list.

9. Click Add
10. Click OK

Launch Permission
The following configures the PNA to allow selected users to Launch (start) the PNA application.
In Agilent PNA Series Properties:

1. Click Use custom launch permissions
2. Click Edit (next to Use custom launch permissions)
3. In Registry Value Permissions, select Everyone
4. Click Remove
5. Click Add
6. You could either select one or more of these groups to have launch permission of the PNA, or

specific users.

284

• To give groups launch permission, select the group from the list.
• To give specific users launch permission, click Show users or Members, then select the

name from the list.
7. Click Add
8. Click OK

In Agilent PNA Series Properties:
1. Click the Identity tab.
2. Click The interactive user. This function supports Events in PNA COM.

Register the PNA Type Library on Your PC
The type library contains the PNA object model. On your PC, there is a Registry file that keeps
track of where object models are located. Therefore, you must register the type library on the PC
that will be used to develop code and run the program. It is much more efficient to have the type
library registered at design time (BEFORE running your COM program).
Do the following two items before proceeding:

1. Connect your PC and the PNA to LAN.
2. Either map a drive to the analyzer or copy the type library files on a floppy disk or other media. See

Drive Mapping.

Note: To register the type library on your PC, you must be logged on as an administrator of your
PC.

This procedure will do the following:
• Register the Network Analyzer application on your PC.
• Copy and register the proxystub (835xps.DLL) onto the PC.
• Copy and register the type library (835x.tlb) onto the PC.
1. Using Windows Explorer on your PC, find the Analyzer’s C: drive. The drive will not be named "C:"

on your PC, but a letter you assigned when mapping the drive.
2. Navigate to Program Files \ Agilent \ Network Analyzer \ Automation
3. Double-click pnaproxy.exe
4. The install program will ask for the full computer name of your PNA. (You can find this at Control

Panel, System, Network Identification, Full Computer name.) Type the Analyzer name at the
prompt.

Note: The process will fail if the type library is currently being used by a development
environment on the PC.

5. After the install program runs, the analyzer type library should be registered on your PC.

Note: Your programming environment may require you to set a reference to the PNA type library
now located on your PC. In Visual Basic, click Project, References. Then browse to C:\Program
Files\Common Files\Agilent\PNA Select 835x.tlb

Problems?
Perform the following procedure if the previous procedure did not return an error, but you cannot
connect to the PNA.
If you received an error, check that both the account name and password used on both the PNA
and PC match EXACTLY.

Note: The previous procedure and the following procedure will both fail if there are any programs
using the PNA type library. For example: Visual basic, VEE, Visual Studio, or any other
application program that may communicate with the PNA.

1. Map a drive from your remote PC to the PNA. Note the drive letter your PC assigns to the PNA.
Substitute this drive letter for PNA in the following procedure.

2. On your PC, go to a DOS prompt c:>
3. Type cd PNA:\program files\agilent\network analyzer
4. Type copy 835xps.dll c:\program files\common files\agilent\pna

285

5. Type cd automation
6. Type copy 835x.tlb c:\program files\common files\agilent\pna
7. If it is not already there, copy regtlib.exe from PNA:\WINNT to your C:\<windows>\system32

directory
8. (<windows> is OS-dependent- it is either windows or WINNT)
9. Type regtlib "C:\program files\common files\agilent\pna\835x.tlb"
10. Type regsvr32 "C:\program files\common files\agilent\pna\835xps.dll"

After doing these, perform "Access Procedure" (run dcomcnfg).

COM Fundamentals

The following terms are discussed in this topic:
� Objects

� Collections

� Methods

� Properties

� Events

Note: The information contained in this topic is intended to help an experienced SCPI
programmer transition to COM programming. This is NOT a comprehensive tutorial on COM
programming.

Other Topics about COM Concepts

Objects
The objects of the Network Analyzer (Application) are arranged in a hierarchical order. The
Network Analyzer object model lists the objects and their relationship to one another.
In SCPI programming, you must first select a measurement before making settings. With COM,
you first get a handle to the object (or collection) and refer to that object in order to change or
read settings.
For more information on working with objects, see Getting a Handle to an Object.

Collections
A collection is an object that contains several other objects of the same type. For example, the
Channels collection contains all of the channel objects.

Note: In the following examples, the collections are referred to as a variable. Before using a
collection object, you must first get an instance of that object. For more information, see Getting a
Handle to an Object

Generally, items in a collection can be identified by number or by name. The order for objects in
a collection cannot be assumed. They are always unordered and begin with 1. For example, in
the following procedure, chans(1) is used to set averaging on the first channel in the Channels
collection (not necessarily channel 1).
Sub SetAveraging()
 chans(1).AveragingFactor = 10
 End Sub

The following procedure uses the measurement string name to set the display format for a
measurement in the measurements collection.
meass("CH1_S11_1").Format = 1

You can also manipulate an entire collection of objects if the objects share common methods. For
example, the following procedure sets the dwell time on all of the segments in the collection.

286

Sub setDwell()
 segs.DwellTime = 30e-3
 End Sub

Methods
A method is an action that is performed on an object. For example, Add is a method that applies
to the Channel object. The following procedure uses the Add method to add a new channel
named NewChan.
Sub AddChan(newChan as String)
 Chan.Add NewChan
 End Sub

Properties
A property is an attribute of an object that defines one of the object’s characteristics, such as size,
color, or screen location. A property can also change an aspect of the object’s behavior, such as
whether the object is visible. In either case, to change the characteristics of an object, you
change the values of its properties.
To change the value of a property, follow the reference to an object with:

• a period (.)
• the property name
• an equal sign (=)
• the new property value.

For example, the following statement sets the IFBandwidth of a channel.
Chan.IFBandwidth = 1KHz

You can also read the current value of a property. The following statement reads the current
IFBandwidth of a channel into the variable Ifbw.
Ifbw = Chan.IFBandwidth

Some properties cannot be set and some cannot be read. The Help topic for each property
indicates if you can:

• Set and read the property (Write/Read)
• Only read the property (Read-only)
• Only set the property (Write-only)

Events
An event is an action recognized by an object, such as clicking the mouse or pressing a key.
Using events, your program can respond to a user action, program code, or triggered by the
analyzer. For example:
OnChannelEvent

For more information, see Working with the Analyzer’s Events.

Collections in the Analyzer

Collections are a gathering of similar objects. They are a convenience item used primarily to
iterate through the like objects in order to change their settings. Collections generally provide the
following generic methods and properties:
Item(n)
 Count
 Add(n)
 Remove(n)

287

where (n) represents the number of the item in the collection. Some collections may have unique
capabilities pertinent to the objects they collect.

Other Topics about COM Concepts

Collections are Dynamic
A collection does not exist until you ask for it. When you request a Channels object (see
Getting a Handle to an Object / Collection), handles to each of the channel objects are gathered
and placed in an array.
For example, if channels 2 and 4 are the only channels that exist, then the array will contain only
2 items. The command ’channels.Count’ will return the number 2, and:

• Channels(1) will contain the channel 2 object.
• Channels(2) will contain the channel 4 object.

The ordering of objects within the collection should not be assumed. If you add a channel to
the previous example, as in:
Pna.Channels.Add(3)

’channels.Count’ will now return 3 and:
• Channels(1) will contain the channel 2 object.
• Channels(2) will contain the channel 3 object.
• Channels(3) will contain the channel 4 object.

Primarily, collections are useful for making this type of iteration possible:
Dim ch as Channel
 For each ch in pna.Channels
 Print ch.Number
 Print ch.StartFrequency
 Print ch.StopFrequency
 Next ch

As soon as this for-each block has been executed, the Channels object goes out of scope.

COM Data Types

The PNA uses several data types to communicate with the host computer. Before using a
variable, it is best to declare the variable as the type of data it will store. It saves memory and is
usually faster to access. The following are the most common data types:
� Long Integer

� Single Precision (Real)

� Double Precision (Real)

� Boolean

� String

� Object

� Enumeration

� Variant

Other Topics about COM Concepts

Long (long integer) variables are stored as signed 32-bit (4-byte) numbers ranging in value from -
2,147,483,648 to 2,147,483,647.

288

Double (double-precision floating-point) variables are stored as IEEE 64-bit (8-byte) floating-point
numbers ranging in value from -1.79769313486232E308 to -4.94065645841247E-324 for
negative values and from 4.94065645841247E-324 to 1.79769313486232E308 for positive
values.

Single (single-precision floating-point) variables are stored as IEEE 32-bit (4-byte) floating-point
numbers, ranging in value from -3.402823E38 to -1.401298E-45 for negative values and from
1.401298E-45 to 3.402823E38 for positive values.

Boolean variables are stored as 16-bit (2-byte) numbers, but they can only be True or False. Use
the keywords True and False to assign one of the two states to Boolean variables.
When other numeric types are converted to Boolean values, 0 becomes False and all other
values become True. When Boolean values are converted to other data types, False becomes 0
and True becomes -1.

String variables hold character information. A String variable can contain approximately 65,535
bytes (64K), is either fixed-length or variable-length, and contains one character per byte. Fixed-
length strings are declared to be a specific length. Variable-length strings can be any length up to
64K, less a small amount of storage overhead.

Object variables are stored as 32-bit (4-byte) addresses that refer to objects within the analyzer
or within some other application. A variable declared as Object is one that can subsequently be
assigned (using the Set statement) to refer to any actual analyzer object.

Enumerations (Enum) are a set of named constant values. They allow the programmer to refer
to a constant value by name instead of by number. For example:
Enum DaysOfWeek
 Sunday = 0
 Monday = 1
 Tuesday = 2
 Wednesday = 3
 Thursday = 4
 Friday = 5
 Saturday = 6
 End Enum

Given this set of enumerations, the programmer can then pass a constant value as follows:
 SetTheDay(Monday)
 rather than
 SetTheDay(1)
 where the reader of the code has no idea what the value 1 refers to.
However, the analyzer RETURNS a long integer, not the text.
 Day = DaysofWeek(today) ’Day = 1

Variant - If you don’t declare a data type ("typed" data) the variable is given the Variant data type.
The Variant data type is like a chameleon — it can represent many different data types in
different situations.
The PNA provides and receives Variant data because there a programming languages that
cannot send or receive "typed" data. Variant data transfers at a slower rate than "typed" data.

Getting a Handle to an Object

The following are discussed in this topic:
� What Is a Handle

289

� Declaring an Object Variable

� Assigning an Object Variable

� Navigating the Object Hierarchy

� Getting a Handle to a Collection

Other Topics about COM Concepts

What Is a Handle
In SCPI programming, you must first select a measurement before changing or reading settings.
With COM, you first get a handle to the object (or collection) and refer to that object to change or
read its settings. The following analogy illustrates this:
A car could be called an object. Like all objects, it has many properties. One of its properties is
"Color". You can read (by looking) or set (by painting) the color property of a car object.
However, the color value (such as Red or Green) depends on what SPECIFIC car object you are
referring to. "Car" is actually a class of objects. You can only read or set the properties of a
specific car object; not the entire car class. Therefore, before reading or setting an object’s
properties, you need to get "a handle" to a specific object.
You can have handles to many objects at the same time. It does NOT have to be the Active or
Selected object.

Note: This process is also called "getting an instance of an object", "returning an object". or
"referring to an object"

There are two steps for getting a handle to analyzer objects:
1. Declaring a Variable As an Object
2. Assigning an Object to the Variable

Note: Before doing this, you must first register the analyzer’s type library on your PC. See
Connecting to the Analyzer

Declaring a Variable As an Object

Note: The examples in these topics use the Visual Basic Programming Language. The Green
text following an apostrophe (’) is a comment.

Use the Dim statement or one of the other declaration statements (Public, Private, or Static) to
declare a variable. The type of variable that refers to an object must be a Variant, an Object, or a
specific type of object. For example, all three of the following declarations are valid:

• Dim RFNA ’ Declare RFNA as Variant data type.

• Dim RFNA As Object ’ Declare RFNA as Object data type.
• Dim RFNA As AgilentPNA835x.Application ’ Declare RFNA As

AgilentPNA835x.Application type

Note: If you use a variable without declaring it first, the data type of the variable is Variant by
default.

If you know the specific object type, you should declare the object variable as that object type.
Declaring specific object types provides automatic type checking, faster code, and improved
readability.

Assigning an Object to a Variable
The first and most important object to assign to a variable is the Application object (the Network
Analyzer). When assigning an object to a variable, use the Set keyword before the object variable
that was declared previously. In the following example, "RFNA" is the variable we declared in the
previous examples. So we assign the current AgilentPNA835x Application to "RFNA".
Set RFNA = AgilentPNA835x.Application

290

However, because the AgilentPNA835x object is the Application server, we must use the
CreateObject keyword with the (classname,server name) parameters.

• The classname for the analyzer object is always "AgilentPNA835x.Application".
• To find your analyzer’s server name, see Sharing Files between your PC and the

Analyzer.
For example, the following statements would create an instance of the Analyzer object.
Dim RFNA AS AgilentPNA835x.Application
 Set RFNA = CreateObject("AgilentPNA835x.Application", "Analyzer46")

Note: These statements will start the Analyzer application if it is not already running on your
instrument.

Once created, you can treat an object variable exactly the same as the object to which it refers.
You can set or return the properties of the object or use any of its methods. For example:
RFNA.Visible = True ’Makes the Network Analyzer Application visible on
the screen

Navigating the Object Hierarchy
To read and set properties of objects below the Analyzer Application, you do not have to "Create"
the object as we did with the Application. But you DO have to navigate the object model
hierarchy. (Refer to the Analyzer Object Model).
You could do refer to an object in the hierarchy directly, without declaring and assigning a
variables. The following example navigates through the Application object to the Active
Measurement which is a ’child’ object of the Application. (The ACTIVE measurement is the
measurement that is acted on if you change settings from the front panel.)
Application.ActiveMeasurement.SmoothingAperture = 10

You can see that this method makes for a very long statement. Making additional changes to the
Active Measurement would require equally long statements.
The following example gets a handle to the Active Measurement object by assigning it to a
variable.
The first step is to Declare an object variable:
Public meas AS Measurement
The next step is to Set the object variable:
We already assigned an instance of the (analyzer) Application to the variable RFNA. Therefore,
we can use the RFNA variable to refer to a specific instance of the Application object.
Set meas = RFNA.ActiveMeasurement
The variable meas now contains a handle to the Application object (RFNA) and the
ActiveMeasurement object. We can now set properties of the ActiveMeasurement as follows:
meas.SmoothingAperature = 10

Getting a Handle to a Collection
The analyzer has several collections of objects which provide a convenient way of setting or
reading all of the objects in the collection with a single procedure. Also, there are objects (limit
lines for example) that can only be accessed through the collection.
To get a handle to an item in a collection, you can refer to the object by item number or
sometimes by name. However, you first have to get a handle to the collection. To assign the
collection to a variable, use the same two step process (1. declare the variable, 2. assign the
variable using ’Set’).
Dim meass As Measurements ’the collection of all measurements currently
on the analyzer
 Set meass = RFNA.Measurements
Then you can iterate through the entire collection of measurements to read or set properties or
execute methods.
meass.Format = naLinMag

291

Or you can read or set a property on an individual object in the collection:
meass(1).Format = naLinMag

Note: Each object and collection has its own unique way of dealing with item names, and
numbers. Refer to the Analyzer Object Model for details.

Programming the PNA with C++

The programming information contained in this Help system is aimed at the Visual Basic
programmer. VB does a lot of work for the programmer when it comes to managing and
accessing components. Using a lower level language like C++ requires a more thorough
understanding of the underlying tenets of COM. It is not the intent of this section to teach COM
programming. The following is intended to acquaint you with some of the basic concepts you
need to know in order to program against COM.
� Initializing COM

� Importing the Type Library

� Creating the Application Object

� Errors

� Events

� Additional Reading

� Example

Note: The information in this section assumes development on a Windows OS using Microsoft
tools.

Other Topics about COM Concepts

Initializing COM
The first thing you must do before performing any COM transactions is to initialize the COM
library. You can do this in a number of ways. The most basic of these is a call to CoInitialize() or
CoIntializeEx(). Alternatively you can use the MFC (Microsoft Foundation Classes) AfxOleInit(
).
Conversely, before your program exits you must uninitialize COM. You can accomplish this with
CoUninitialize() or the MFC routine AfxOleTerm().

Importing the Type Library
To make a component available to the client, the server exports what is called the type library.
For the PNA, this file is 835x.tlb. It is located on the PNA’s hard drive at C:\Program Files\
Agilent\ Network Analyzer\ Automation. See Configure for COM-DCOM Programming.
The type library can be read and deciphered using another COM interface called ITypeLib. VB
uses this interface to present, for example, its object browser. Visual C++ can also read type
libraries. This is done by importing the type library into your project with a compiler directive:
#import "C:\Program Files\Common Files\Agilent\Pna\835x.tlb",
named_guids

When you compile your program with this statement in it, the compiler creates two other files:
835x.tlh and 835x.tli. The first is a header file that contains the type definitions for the PNA’s
COM interfaces and their methods. The second file contains inline functions that wrap the PNA’s
interface methods. The wrappers are beneficial in that they contain error reporting for each of the
method calls.

292

The .tlh file defines a smart pointer which you can use to access the PNA’s objects. The smart
pointer definition looks like this:
 _com_smartptr_typedef(Iapplication, _uuidof(Iapplication))
A smart pointer is a term used for a C++ object that encapsulates a pointer used to refer to a
COM object. All COM objects derive from the interface IUnknown. This interface has three
methods: QueryInterface(), AddRef(), and Release(). The function of the AddRef and Release
methods is to maintain a reference count on the object and thus control the object’s lifetime.
Anytime you copy or create a reference to a COM object, you are responsible for incrementing its
reference count. And likewise, when you are finished using that reference, it is your responsibility
to Release it. Smart pointers do this work for you, as shown in the example program. In addition,
smart pointers will also perform the QueryInterface call when required. QueryInterface is a
method that requests a specific interface from an object. In the example program we gain access
to the IArrayTransfer interface of the Measurement object. In the ReadMethod routine, we see
this:
PTransferData = pMeas;

The assignment operator is overloaded for the smart pointer and in reality, this simple statement
does this:
HRESULT hr = pMeas->QueryInterface(
IID_IArrayTransfer,(void**)&pTransferData);

Using the existing interface pointer (pMeas) to the object, this call asks the object if it supports the
IArrayTransfer interface, and if so to return a pointer to it in pTransferData. Smart pointer makes
life easier for the C++ programmer. Read more about smart pointers in Microsoft Developer’s
Network Library (MSDN).

Creating the Application Object
The only createable object exported by the PNA is the Application object. Typically this would be
done with a call to CoCreateInstance:
STDAPI CoCreateInstance(
 CLSID__IApplication, //Class identifier (CLSID) of the object
 NULL, //Pointer to controlling IUnknown
 CLS_CTX_SERVER, //Context for running executable code
 IID_IApplication, //Reference to the IID of the interface
 (void**)&pNA //Address of output variable that receives
 // the interface pointer requested in riid
);

With the smart pointer, this is taken care of with the following call:
IApplicationPtr pNA; // declare the smart pointer
 pNA = IApplicationPtr("AgilentPNA835x.Application.1");

Errors
All COM method calls are required to return an HRESULT. This is 32 bit long with a specific
format.

• The most significant bit indicates success(0) or failure(1).
• The lower 16 bits indicate the specific failure.

Visual Basic strips off the returned HRESULT and raises an error object for non-successful
returns. The C++ programmer must himself be diligent about handling errors. You must check the
return value of each COM call to ensure its success.

Events
The Application object sources the INetworkAnalyzerEvents interface. This object is the source
for all events. To use events in C++, you must do two things:

1. Implement the INetworkAnalyzerEvents interface - derive an object from
INetworkAnalyzerEvents and implement the methods described there.

293

2. Subscribe to the IconnectionPoint interface of the Application object. - obtain a pointer to
the IConnectionPointContainer interface of the Application object and making the
following request:

FindConnectionPoint(IID_InetworkAnalyzerEvents, &pConnection);

A successful call to this interface will return a valid pointer in pConnection. Use this pointer to
subscribe to the Application object:
pConnect->Advise(IUnknown* punk, DWORD dwCookie);

This call provides the server object with a callback address. The Iunkown pointer in this call is the
IUnkown pointer of the object that implements the INetworkAnalyzerEvents interface. This is the
event sink. The application object needs a pointer to this object in order to call your interface
when an event occurs. The dwCookie is your subscription key. Use it to unsubscribe (see
Unadvise()).

Additional Reading
"MSDN" - Microsoft Developer’s Network Library
"Learning DCOM", by Thuan L. Thai, published by O’Reilly(1999)
"Inside COM", by Dale Rogerson, published by Microsoft Press (1997)
"Understanding ActiveX and OLE", by David Chappell, also published by Microsoft Press
(1996)
"Beginning ATL COM Programming", published by Wrox Press (1998)

Example
The example uses the smart pointer created by Microsoft Visual Studio. The calls to CoInitialize
and CoUninitialize open and close the COM libraries. In the example, notice that the pointers
local to the main routine are explicitly released. When smart pointers go out of scope, they will
perform this duty implicitly. However, we are calling CoUninitialize before they have the chance to
be destroyed, so we are obliged to release them.
See the example program.

Read and Write Calibration Data using COM

You can read or write two types of Calibration data in the PNA:
• Standard Measurement data -raw data resulting from the measurement of a calibration

standard.
• Error Terms - calculated data using standard measurement data and the algorithms for

the specified cal type.
Each of these data are available in the PNA in either variant data or typed data. Learn more
about variant and typed data

Other Topics about COM Concepts

Evolution of the Calibration Architecture
PNA 2.0 expanded the use of the Cal Set, which is simply a container for calibration data. In
PNA 1.0 the Cal Set was restricted to one cal type and could only be used by the channel that
created it. In PNA 2.0, the Cal Set is sized dynamically, can accommodate more than one cal
type, and can be used by multiple channels. (Learn more about Cal Sets)
The PNA has two sets of automation interfaces that contain methods for getting and putting
Calibration data in a Cal Set:
Set 1 - ICalibrator (variant), ICalData (typed)

294

The ICalibrator and ICalData interfaces were introduced in PNA 1.0. They contain several
methods for putting and getting error terms and standard measurement data.
Set 2 - ICalSet (variant), ICalData2(typed)
The ICalSet interface was introduced with PNA2.0 to support the new Cal Set features. The
methods on this interface include, but are not limited to, putting and getting data to and from the
Cal Set. In addition, the ICalData2 interface was introduced to work with non-variant data. The
following is an example of using ICalSet to read error term data. This examples gets a handle to a
Cal Set using the GetCalSetByGUID method.
dim CMGR as CalManager
 dim CSet as CalSet
 dim strCalSetGUID as string
 dim iEtermSetID as integer
 dim caltype as NACalType
 dim eTerm as NAErrorTerm2
 dim rcvPort as long
 dim srcPort as long
 CMGR.GetCalSetUsageInfo(channel, strCalsetGUID, iEtermSetID)
 set CSet = CMGR.GetCalSetByGUID(strCalSetGUID)
 caltype = naResponseOpen
 rcvPort = 1
 srcPort = 1
 eTerm = naET_ReflectionTracking
 CSet.Open(caltype, rcvPort, srcPort)
 VarData = CSet.GetErrorTerm(ETerm, rcvPort, srcPort)
 CSet.Close()

Recommendation
For reading and writing calibration data, we strongly recommend using the ICalSet and
ICalData2.

Note: The ICalibrator interface still required for other calibration activities, such as acquiring
calibration data.

Using ICalibrator with PNA2.0 Cal Sets
You can still use the ICalibrator interface to read and write calibration data on the 2.0 Cal Sets.
To data from a Cal Set,

1. Get a handle to the Cal Set using one of the "get" methods on the ICalManager Interface
2. Get a handle to a Calibrator object on the same channel as the Cal Set.
3. Specify the Cal Type and ports with the SetCalInfo method:

The following example reads error term data from a Cal Set
Need code here that gets a handle to a Cal Set

ICalibrator.SetCalInfo(caltype, rcvPort, srcPort)
 VarData = ICalibrator.GetErrorTerm(ETerm, rcvPort, srcPort)

Write data to a Cal Set
You can either fill an "empty" cal set with data or overwrite an existing Cal Set. The SetCalInfo
method will create an empty Cal Set if there is no Active Cal Set on the same channel as the
Calibrator object. The following example writes error terms to an empty Cal Set.
ICalibrator.SetCalInfo(caltype, rcvPort, srcPort)
 VarData = ICalibrator.putErrorTerm(ETerm, rcvPort, srcPort)

Working with Events

� What are Events?

� Using the Analyzer’s Events

295

� Event ID’s

� Filtering Events

� List of Events

� Out of Range Errors

� Troubleshooting Problems with Events
See Events Example.

Other Topics about COM Concepts

What are Events?
Windows applications work from user-initiated events such as mouse moves and mouse clicks. A
mouse-click produces an event that the programmer can either ignore or "handle" by providing an
appropriate subroutine like this:
Sub DoThis_onClick
 Perform something
 End Sub

If this subroutine were in your program and the mouse-click event occurs on your PC, it would
generate a "Callback" to the client and interupt whatever it was doing and handle the event.
A more practical example of an event in the analyzer is Limit test. If limit test is on and the
measurement fails, the analyzer produces a ’"Limit-failed" event. If the measurement passed, the
analyzer produces a "Limit-succeeded" event.
The Analyzer has a very sophisticated Event structure. Your program CAN be notified when one
or more events occur. However, it may not be necessary.
For example, the analyzer has an event that will notify your program when a sweep is complete.
A simpler alternative is to use a synchronous command which waits for the sweep to complete.
sync = True
 app.ManualTrigger sync
 chan.StartFrequency = 4.5E6

This would NOT work if you want the controller to do other things while waiting, like setup a
power meter or sort some data. In this case you would like a "callback" from the analyzer to let
your program know that the sweep has completed. For an example of this see Events Example.
Another reason to use events is when you want to be notified of several conditions when they
occur, such as errors or source unlock conditions. It would not be practical to routinely poll these
conditions while executing your program.

Using Events
If you decide to use the COM events to get a callback, your program must do two things:
1. Subscribe to events:
All events in the analyzer are a child of the Application object through the
INetworkAnalyzerEvents Interface. You must tell the Application object that you are interested in
receiving event callbacks. This process is called subscription.
In Visual Basic, this is done by including "WithEvents" in the declaration statement. The
declaration below dimensions an Application object (myPNA) and subscribes to the events
produced by the Application.
Dim WithEvents myPNA as AgilentPNA835x.Application

In C++, this is a bit more involved. You must queryInterface for the IconnectionPointContainer
interface, locate the InetworkAnalyzerEvents interface via a call to FindConnectionPoint and call
Advise().
2. Implement the Event Handler
When an event occurs, the Application object will "callback" to the client through the
InetworkAnalyzerEvents interface.

296

In VB, click on the object window (upper left pane). Find the Application object and click it. The
event interfaces will appear in the upper right pane. As you click on them, VB supplies the first
line of code. You fill in the rest of the handler routine to service the event. The following is an
example of a event handler subroutine.

Note: In C++, you must type the callback.

Private Sub OnChannelEvent(eventID as Variant, channelNumber as
Variant)
 Select Case (eventID)
 Case naEventID_CHANNEL_TRIGGER_COMPLETE:
 GetData(channelNumber)
 Case naEventID_CHANNEL_TRIGGER_ABORTED:
 MsgBox("Hey don’t touch the front panel!")
 End Select
 End Sub

When the trigger is complete, the application object "fires" the event by making a callback to the
event handler Sub OnChannelEvent().

Event IDs
3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
Se
v

C R Facility Code

Filtering Events
There are over 140 different events that you subscribe to when you "Dim WithEvents..." (or the
equivalent in your programming language). Monitoring all of these conditions slows the speed of
the analyzer significantly. The following methods allow you to filter the events so that you only
monitor specific conditions.

• AllowEventMessage - monitor a specific event
• AllowAllEvents - monitor ALL events
• DisallowAllEvents - monitor NO events
• AllowEventCategory - monitor specific event categories (discussed later)
• AllowEventSeverity - monitor events having one or more of the following severity levels

associated with them.
Code Severity Enumeration
00 naEventSeveritySUCCESS - the operation completed successfully
01 naEventSeverityINFORMATIONAL - events that occur without impact on the

measurement integrity
10 naEventSeverityWARNING - events that occur with potential impact on

measurement integrity
11 naEventSeverityERROR - events that occur with serious impact on

measurement integrity

List of Events
The following is a list of categories and the general types of events they include. Click the link
view the event details.
Category Enumeration Callback
naEventCategory_PARSER OnSCPIEvent
naEventCategory_MEASURE OnMeasurementEvent
naEventCategory_CHANNEL OnChannelEvent
naEventCategory_HW OnHardwareEvent
naEventCategory_CAL OnCalEvent
naEventCategory_USER OnUserEvent
naEventCategory_DISPLAY OnDisplayEvent

297

naEventCategory_GENERAL OnSystemEvent

Note: Use the MessageText Method to get a text message describing the event.

Out of Range Errors
When you attempt to set a value on an active function that is beyond the range (min or max) of
the allowable values, the analyzer limits that value to an appropriate value (min or max) and sets
the function to the limited value. From the front panel controls this is visually evident by the limited
value in the edit box or by the annotation on the display. An example would be attempting to set
the start frequency below 300kHz. The edit control doesn’t allow the number to fall below 300kHz.
When the automation user programs a setting (such as start frequency below the allowable limits)
the same behavior takes place. The analyzer accepts the limited value. However, in order to learn
what setting took place, you have to read the HRESULT.
All automation calls return HRESULTs. By default the HRESULT returned when an overlimit
occurs is S_NA_LIMIT_OUTOFRANGE. This value is a success code, meaning that bit 31 in this
32 value is 0. Programmers should check the return code from all automation calls to determine
success or failure.
Some C++ macros (like SUCCEEDED(hr) or FAILED(hr)) only check bit 31. So if you are
interested in trapping this outOfRange error you will have to check for
S_NA_LIMIT_OUTOFRANGE explicity.
Alternatively, you can configure the analyzer to report outOfRange conditions with an error code.
Use the method: App.SetFailOnOverRange (true). With this method set TRUE, any overrange
error will return E_NA_LIMIT_OUTOFRANGE_ERROR.
This method is provided for the benefit of VB clients. VB users can’t detect specific success
codes because the VB runtime strips off the HRESULT and only raises a run time error if bit 31 is
set, indicating a fail code.

Troubleshooting Problems with Callbacks
When you do callbacks, the client PC becomes the server and the analyzer (server) becomes the
client. Callbacks can only take place when both server and client are in the same workgroup or in
the same domain. See Configure for COM.

SCPI Command Tree

IEEE- 488.2 Common Commands

ABORt Stops all sweeps

CALCulate __Click to hide CALC commands
:CORRection Sets Electrical Delay and Phase Offset
:CUSTom Creates custom measurements
:DATA Sends and queries data.
:FILTer Sets time domain gating
:FORMat Sets the display format
:FUNCtion Controls Trace Statistics
:LIMit Controls limit lines for pass / fail testing
:MARKer Controls the marker settings
:MATH Performs math on the memory trace
:NORMalize Specifies the normalization features used for

a receiver power calibration

298

:PARameter Creates and deletes measurements
:RDATa? Queries receiver data
:SMOothing Controls point-to-point smoothing
:TRANsform Controls time domain transform settings
CONTrol Controls the rear-panel connectors
DISPlay Controls the display settings
FORMat Sets the format for data transfer
HCOPy Controls hardcopy printing
INITiate Sets continuous or manual triggering
MMEMory Saves and recalls instrument states
OUTPut Turns RF power ON and OFF

SENSe __Click to hide SENSe commands
:AVErage Sets sweep averaging parameters
:BANDwidth Specifies the IF filter bandwidth
:CORRection Provides non-guided calibration capability
:CORR:COLL:CKIT Defines calibration standards
:CORR:CSET Manages Cal Sets
:CORR:COLL:GUID Provides Guided calibration capability
:COUPle Sets sweep as Chopped or Alternate
:FREQuency Controls frequency sweep functions
:OFFSet Sets frequency offset functions
:POWer Sets receiver attenuation and overpower

protection
:ROSCillator Returns the source of the reference oscillator.
:SEGMent Defines the segment sweep settings.
:SWEep Specifies the sweep modes of the analyzer.
SOURce Controls the power to the DUT
SOURce:POWer Provides for Source Power Correction
STATus Reads the analyzer status registers
SYSTem Controls the analyzer defaults
TRIGger Starts or ends a measurement

IEEE 488.2 Common Commands

*CLS - Clear Status

*ESE - Event Status Enable

*ESE? - Event Status Enable Query

*ESR? - Event Status Enable Register

*IDN? - Identify

*OPC - Operation complete command

*OPC? - Operation complete query

*OPT? - Identify Options Query

*RST - Reset

*SRE - Service Request Enable

*SRE? - Service Request Enable Query

*STB? - Status Byte Query

299

*TST? - Result of Self-test Query

*WAI - Wait

*CLS - Clear Status
Clears the instrument status byte by emptying the error queue and clearing all event registers.
Also cancels any preceding *OPC command or query. See Status Commands and Reading the
Analyzer’s Status Registers.

*ESE - Event Status Enable
Sets bits in the standard event status enable register. See Status Commands and Reading the
Analyzer’s Status Registers.

*ESE? - Event Status Enable Query
Returns the results of the standard event enable register. The register is cleared after reading it.
See Status Commands and Reading the Analyzer’s Status Registers.

*ESR - Event Status Enable Register
Reads and clears event status enable register. See Status Commands and Reading the
Analyzer’s Status Registers.

*IDN? - Identify
Returns a string that uniquely identifies the analyzer. The string is of the form "Agilent
Technologies",<model number>,<serial "number>,<software revision>" .

*OPC - Operation complete command
Generates the OPC message in the standard event status register when all pending overlapped
operations have been completed (for example, a sweep, or a Default). See Understanding
Command Synchronization.

*OPC? - Operation complete query
Returns an ASCII "1" when all pending overlapped operations have been completed. See
Understanding Command Synchronization

*OPT? - Identify Options Query
Returns a string identifying the analyzer option configuration.

*RST - Reset
Executes a device reset and cancels any pending *OPC command or query, exactly the same as
a SYSTem:PRESet. The contents of the analyzer’s non-volatile memory are not affected by this
command.

*SRE - Service Request Enable
Before reading a status register, bits must be enabled. This command enables bits in the service
request register. The current setting is saved in non-volatile memory. See Status Commands and
Reading the Analyzer’s Status Registers.

*SRE? - Service Request Enable Query

300

Reads the current state of the service request enable register. The register is cleared after
reading it. The return value can be decoded using the table in Status Commands. See also
Reading the Analyzer’s Status Registers.

*STB? - Status Byte Query
Reads the value of the instrument status byte. The register is cleared only when the registers
feeding it are cleared. See Status Commands and Reading the Analyzer’s Status Registers.

*TST? - Result of Self-test Query
Returns the result of a query of the analyzer hardward status. An 0 indicates no failures found.
Any other value indicates one or more of the following conditions exist. The value returned is the
Weight (or sum of the Weights) of the existing conditions. For example:

• If 4 is returned from *TST?, an Overpower condition exists.
• If 6 is returned, both Unleveled and Overpower conditions exists.

Bit Weight Description Bit is set to 1 when the following conditions exist:
0 1 Phase Unlock the source has lost phaselock. This could be caused by a

reference channel open or a hardware failure.
1 2 Unleveled the source power is unleveled. This could be a source is

set for more power than it can deliver at the tuned
frequency. Or it could be caused by a hardware failure.

2 4 Overpower too much power is detected at the input. This is from either
using an amplifier, or a hardware failure.

3 8 EE Write Failed an attempted write to the EEPROM has failed. This is
possibly caused by a hardware failure.

4 16 YIG Cal Failed the analyzer was unable to calibrate the YIG. Either the
phaselock has been lost or there has been a hardware
failure.

5 32 Ramp Cal Failed the analyzer was unable to calibrate the analog ramp
generator due to a possible hardware failure.

6 64 OverTemp the source temperature sensor exceeds the limit. It could
result from restricted airflow or a broken fan

*WAI - Wait
Prohibits the instrument from executing any new commands until all pending overlapped
commands have been completed. See Understanding Command Synchronization

About Triggering

Abort Command

ABORt
(Write-only) Stops all sweeps - then resume per current trigger settings. This command is the
same as INITtiate:IMMediate (restart) except if a channel is performing a single sweep, ABORt
will stop the sweep, but not initiate another sweep.
Examples ABOR

 abort

Query Syntax Not applicable

301

Overlapped? No
Default Not applicable

Calc:Correction Commands

Controls Electrical Delay and Offset

• Click on a blue keyword to view the command details.

• See a List of all commands in this block.

Note: CALCulate commands act on the selected measurement. You can select one
measurement in each channel. To select the measurement use CALC<ChanNum>:PAR:SEL
<MeasName>.

CALCulate<cnum>:CORRection:EDELay:MEDium <char>
(Read-Write) Sets the media used when calculating the electrical delay.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1.
<num> Choose from: COAX for coaxial medium, WAVEguide for waveguide

medium.

Examples CALC:CORR:EDEL:MED COAX

calc3:corr:edelay:medium waveguide

Query Syntax CALCulate<cnum>:CORRection:EDELay:MEDium?
Return Type Character

Overlapped? No
Default COAX

CALCulate<cnum>:CORRection:EDELay:TIME <num>
(Read-Write) Sets the electrical delay for the selected measurement. Critical Note:
Parameters
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.
<num> Electrical delay in seconds. Choose any number between:

 -10.00 and 10.00

302

 Use SENS:CORR:RVEL:COAX <num> to set Velocity factor.

Examples CALC1:CORR:EDEL:TIME 1NS

 calculate2:correction:time 0.5e-12

Query Syntax CALCulate:CORRection:EDELay:TIME?
Return Type Character

Overlapped? No
Default 0 seconds

CALCulate<cnum>:CORRection:EDELay:WGCutoff <num>
(Read-Write) Sets the waveguide cutoff frequency used when the electrical delay media is set
to WAVEguide. (See CALCulate:CORRection:EDELay:MEDium <char>.)
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1.
<num> Waveguide cutoff frequency used with the electrical delay calculation.

Examples CALC:CORR:EDEL:WGC 18.067 GHz

calculate3:correction:edelay:wgcutoff 14.047 ghz

Query Syntax CALCulate<cnum>:CORRection:EDELay:WGCutoff?
Return Type Character

Overlapped? No
Default 45 MHz

CALC<ch>:CORRection:ERROr:TYPE <string>
(Read-Write) Set the caltype for this measurement. The string argument can be either the
GUID of the caltype or the registered name. To determine the name or guid, see the above
command (SENS:CORR:CSET:TYPE:CAT?)CALC<ch>:CORR:ERROr:TYPE? <optional
enum>. This command requires a measurement be selected for the calc block
(CALC:PAR:SEL).
Parameters
<ch> Any existing channel number. If unspecified, value is set to 1

Examples CALC:CORR:ERRO:TYPE

 CALC2:CORRection:ERROr:TYPE

Query Syntax Not Applicable
Return Type string
Overlapped? No
Default Not Applicable

CALC<ch>:CORRection: ERROr:TYPE?<opt enum>
(Read-Write) Returns the currently selected calibration type. This command requires a
measurement be selected for the calc block (CALC:PAR:SEL).
Parameters
<ch> Any existing channel number. If unspecified, value is set to 1

303

<optional
enum>

NAME: (default) returns the string name of the caltype
GUID: Returns the guid of the caltype

Examples CALC:CORR:ERRO:TYPE?

 CALC2:CORRection:ERROr:TYPE?

Query Syntax Not Applicable
Return Type string
Overlapped? No
Default Not Applicable

CALC<ch>: CORRection: ERROr:STATE on | off
(Read-Write) Turns error correction on or off for this measurement. This command requires a
measurement be selected for the calc block (CALC:PAR:SEL).
Parameters
<ch> Any existing channel number. If unspecified, value is set to 1

Examples CALC:CORR:ERRO:STATE

 CALC2:CORRection:ERROr:STATE on

Query Syntax Not Applicable
Return Type string
Overlapped? No
Default Not Applicable

CALC<ch>: CORRection: ERROr:STATE?
(Read-Write) Query Form: returns the status of correction for the selected measurement
(on/off). This command requires a measurement be selected for the calc block
(CALC:PAR:SEL).
Parameters
<ch> Any existing channel number. If unspecified, value is set to 1

Examples CALC:CORR:ERRO:STAT?

 CALC2:CORRection:ERROr:STAT? on

Query Syntax Not Applicable
Return Type on/off
Overlapped? No
Default Not Applicable

CALCulate<cnum>:CORRection:OFFSet[:MAGNitude] <num>
(Read-Write) Specifies the power level to which the selected (unratioed) measurements data is

to be adjusted by a Receiver Power Calibration. This command applies only when the

304

selected measurement is of unratioed power. Critical Note:
Parameters
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.
<num> Cal power level in dBm. No limits are enforced on this value, but the PNA

receivers themselves have maximum and minimum power specifications
(that may differ between PNA models) which this value must comply with
for a valid receiver power cal.

Examples CALC:CORR:OFFS 10DBM

 calculate1:correction:offset:magnitude maximum

Query Syntax CALCulate<cnum>:CORRection:OFFSet[:MAGNitude]?
Return Type Character

Overlapped? No
Default 0dBm

CALCulate<cnum>:CORRection:OFFSet:PHASe <num>[<char>]
(Read-Write) Sets the phase offset for the selected measurement. Critical Note:
Parameters
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.
<num> Offset phase value. Choose any number between:

 -360 and 360
<char> Units for phase. OPTIONAL. Choose either:

 DEG - Degrees (default)
 RAD - Radians

Examples CALC:CORR:OFFS:PHAS 10

 calculate:correction:offset:phase 20rad

Query Syntax CALCulate:CORRection:OFFSet:PHASe?
Return Type Character, returned value always in degrees

Overlapped? No
Default 0 degrees

Calc:Data Commands

Controls sending and receiving data with the PNA

• Click on a blue keyword to view the command details.

305

• See a List of all commands in this block.
• See Data Access Map

CALCulate<cnum>:DATA <char>,<data>
Writes Measurement data, Memory data, Normalization Divisor data, or Error terms.

CALCulate<cnum>:DATA? <char>
 Reads Measurement data, Memory data, Normalization Divisor data, or Error terms.
 Format of returned Measurement and Memory Data:
REAL or ASCii (see Transferring Measurement Data)

FDATA - one number per trace point
 SDATA - two numbers per trace point
 FMEM - one number per trace point
 SMEM - two numbers per trace point
 SDIV - two numbers per trace point

Format of all returned Error Terms: - two numbers per trace point
(see below for specifying <char> for error terms)
Parameters
<cnum> - Channel number of the measurement. There must be a selected measurement on
that channel. If unspecified, <cnum> is set to 1.
<char> - To write or read Measurement (DATA), Memory (MEM) or Normalization Divisor
(DIV) choose from:

FDATA - formatted trace data from measResult location
 SDATA - corrected complex trace data from rawMeas location
 FMEM - formatted memory data from memResult location
 SMEM - corrected complex data from rawMemory location
 SDIV - complex data from Normalization Divisor location

Note: Normalization Divisor data is that obtained from a Receiver Power Calibration, for
example.

<char> - To write or read Error Terms...
For Response Open calibrations:
Specify this <char>... to get this Term...
SCORR3 Reflection Tracking

For Response Short calibrations:
Specify this <char>... to get this Term...
SCORR3 Reflection Tracking

For Response Thru calibrations:
Specify this <char>... to get this Term...
SCORR6 Transmission Tracking

For Response Thru and Isolation calibrations:
Specify this <char>... to get this Term...
SCORR4 Isolation
SCORR6 Transmission Tracking

For 1-Port calibrations:
Specify this <char>... to get this Term...
SCORR1 Directivity
SCORR2 Source Match
SCORR3 Reflection Tracking

For 2-Port SOLT and TRL calibrations
Specify this <char>... to get this Term...

306

SCORR1 Forward Directivity
SCORR2 Forward Source Match
SCORR3 Forward Reflection Tracking
SCORR4 Forward Isolation
SCORR5 Forward Load Match
SCORR6 Forward Transmission Tracking
SCORR7 Reverse Directivity
SCORR8 Reverse Source Match
SCORR9 Reverse Reflection Tracking
SCORR10 Reverse Isolation
SCORR11 Reverse Load Match
SCORR12 Reverse Transmission Tracking

For FULL 3-Port SOLT calibrations
Specify this <char>... to get this Term... for this Receiver Port .
SCORR13 Directivity 3 (S33)
SCORR14 Source Match 3 (S33)
SCORR15 Reflection Tracking 3 (S33)
SCORR16 Isolation 3 (S31)
SCORR17 Load Match 3 (S31)
SCORR18 Trans Tracking 3 (S31)
SCORR19 Isolation 1 (S13)
SCORR20 Load Match 1 (S13)
SCORR21 Trans Tracking 1 (S13)
SCORR22 Isolation 3 (S32)
SCORR23 Load Match 3 (S32)
SCORR24 Trans Tracking 3 (S32)
SCORR25 Isolation 2 (S23)
SCORR26 Load Match 2 (S23)
SCORR27 Trans Tracking 2 (S23)

EXAMPLE
CALC:DATA FDATA,Data(x)
 calculate2:data sdata,data(r,i)

See another example using this command.
Overlapped? - No
Default - Not Applicable

Notes:
• When querying memory, you must first store a trace into memory using

CALC:MATH:MEMorize.
• When querying the normalization divisor, you must first store a divisor trace using

CALC:NORMalize[:IMMediate].
• If normalization interpolation is ON and the number of points changes after the initial

normalization, the divisor data will then be interpolated.
• When querying error terms, there must be error terms in the analyzer.
• If interpolation is ON and the number of points changes after the initial calibration, the

error terms will then be the interpolated results.
• To get and put receiver data, see CALC:RDATA?
• To get uncorrected ratioed data, turn correction OFF and use Calc:Data SDATA.
• CALCulate commands act on the selected measurement. You can select one

measurement in each channel. Therefore, you can have up to four measurements
selected at the same time. Select the measurement for each channel using
CALC:PAR:SEL.

Learn more about Error Terms

307

CALCulate<cnum>:DATA:CUSTom <name>,<data>
(Read-Write) Reads or writes data from a custom-named measurement buffer. Specify the
measurement using CALCulate:PARameter:SELect. Critical Note:
Parameters
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.
<name> Name of the buffer to be read or written
<data> Data to be read or written to the custom buffer. Format as one number

per data point.

Examples CALC:DATA:CUST ’VectorResult0’,0,1,2,3,4,5 ’Write

CALC:DATA:CUST? ’VectorResult0’ ’Read

Query Syntax CALCulate:DATA:CUSTom? <name>
Return Type REAL or ASCii (see Getting Data from the Analyzer)

Overlapped? No
Default Not Applicable

CALCulate<cnum>:DATA:CUSTom:CATalog?
(Read-only) Reads the list of buffer names (comma separated list of string values) available
from the selected parameter. Specify the measurement using CALCulate:PARameter:SELect.
Critical Note:
Parameters
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.

Examples CALC:DATA:CUST:CAT?

calculate:data:custom:catalog?

Return Type REAL or ASCii (see Getting Data from the Analyzer)

Overlapped? No
Default Not Applicable

Calc:Filter Commands

Controls the gating function used in time domain measurements. The gated range is specified
with either (start / stop) or (center / span) commands.

308

• Click on a blue keyword to view the command details.
• See a List of all commands in this block.
• Learn about Gating

Note: CALCulate commands act on the selected measurement. You can select one
measurement in each channel. Select the measurement for each channel using CALC:PAR:SEL.

CALCulate<cnum>:FILTer[:GATE]:TIME:CENTer <num>
(Read-Write) Sets the gate filter center time. Critical Note:
Parameters
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.
<num> Center time in seconds; Choose any number between:

 ± (number of points-1) / frequency span
Note: This command will accept MIN or MAX instead of a numeric
parameter. See SCPI Syntax for more information.

Examples CALC:FILT:GATE:TIME:CENT -5 ns

 calculate2:filter:time:center maximum

Query Syntax CALCulate<cnum>:FILTer[:GATE]:TIME:CENTer?
Return Type Character

Overlapped? No
Default 0

CALCulate<cnum>:FILTer[:GATE]:TIME:SHAPe <char>
(Read-Write) Sets the gating filter shape when in time domain. Critical Note:
Parameters
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.
<char> Choose from

 MAXimum - the widest gate filter available
 WIDE -
 NORMal -
 MINimum - the narrowest gate filter available

Examples CALC:FILT:GATE:TIME:SHAP MAX

 calculate2:filter:time:shape normal

Query Syntax CALCulate<cnum>:FILTer[:GATE]:TIME:SHAPe?
Return Type Character

Overlapped? No
Default NORMal

CALCulate<cnum>:FILTer[:GATE]:TIME:SPAN <num>
(Read-Write) Sets the gate filter span time. Critical Note:

309

Parameters
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.
<num> Time span in seconds; Choose any number between:

 0 and 2* [(number of points-1) / frequency span]
Note: This command will accept MIN or MAX instead of a numeric
parameter. See SCPI Syntax for more information.

Examples CALC:FILT:GATE:TIME:SPAN 5 ns

 calculate2:filter:time:span maximum

Query Syntax CALCulate<cnum>:FILTer[:GATE]:TIME:SPAN?
Return Type Character

Overlapped? No
Default 20 ns

CALCulate<cnum>:FILTer[:GATE]:TIME:STATe <boolean>
(Read-Write) Turns gating state ON or OFF. Critical Note:
Note: Sweep type must be set to LInear Frequency in order to use Transform Gating.
Parameters
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.
<boolean> ON (or 1) - turns gating ON.

 OFF (or 0) - turns gating OFF.

Examples CALC:FILT:TIME:STAT ON

 calculate2:filter:gate:time:state off

Query Syntax CALCulate<cnum>:FILTer[:GATE]:TIME:STATe?
Return Type Boolean (1 = ON, 0 = OFF)

Overlapped? No
Default OFF

CALCulate<cnum>:FILTer[:GATE]:TIME:STARt <num>
(Read-Write) Sets the gate filter start time. Critical Note:
Parameters
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.
<num> Start time in seconds; any number between:

 ± (number of points-1) / frequency span
Note: This command will accept MIN or MAX instead of a numeric
parameter. See SCPI Syntax for more information.

Examples CALC:FILT:TIME:STAR 1e-8

 calculate2:filter:gate:time:start minimum

Query Syntax CALCulate<cnum>:FILTer[:GATE]:TIME:STARt?
Return Type Character

310

Overlapped? No
Default 10 ns

CALCulate<cnum>:FILTer[:GATE]:TIME:STOP <num>
(Read-Write) Sets the gate filter stop time. Critical Note:
Parameters
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.
<num> Stop time in seconds; any number between:

 ± (number of points-1) / frequency span
Note: This command will accept MIN or MAX instead of a numeric
parameter. See SCPI Syntax for more information.

Examples CALC:FILT:TIME:STOP -1 ns

 calculate2:filter:gate:time:stop maximum

Query Syntax CALCulate<cnum>:FILTer[:GATE]:TIME:STOP?
Return Type Character

Overlapped? No
Default 10 ns

CALCulate<cnum>:FILTer[:GATE]:TIME[:TYPE] <char>
(Read-Write) Sets the type of gate filter used. Critical Note:
Parameters
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.
<char> Choose from:

 BPASs - Includes (passes) the range between the start and stop times.
 NOTCh - Excludes (attenuates) the range between the start and stop
times.

Examples CALC:FILT:TIME BPAS

 calculate2:filter:gate:time:type notch

Query Syntax CALCulate<cnum>:FILTer[:GATE]:TIME[:TYPE]?
Return Type Character

Overlapped? No
Default BPAS

Calc:Format Command

Note: CALCulate commands act on the selected measurement. You can select one

311

measurement in each channel. Select the measurement for each channel using CALC:PAR:SEL.

• See an example using this command.
• See a List of all commands in this block.
• Learn About Data Format

CALCulate<cnum>:FORMat <char>
(Read-Write) Sets the display format for the measurement. Critical Note:
Parameters
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.
<char> Choose from:

• MLINear
• MLOGarithmic
• PHASe
• IMAGinary
• REAL
• POLar
• SMITh
• SWR

GDELay

Examples CALC:FORM MLIN

 calculate2:format polar

Query Syntax CALCulate<cnum>:FORMat?
Return Type Character

Overlapped? No
Default MLINear

List of all commands in this block:
 (Parameters in bold italics)
:CALCulate1:FORMat MLIN
 :CALCulate1:FORMat?

Calc:Function Commands

• Click on a blue keyword to view the command details.
• See a List of all commands in this block.
• Learn about Trace Statistics

312

Note: CALCulate commands act on the selected measurement. You can select one
measurement in each channel. Select the measurement for each channel using CALC:PAR:SEL.

CALCulate<cnum>:FUNCtion:DATA?
(Read-only) Returns the trace statistic data for the selected statistic type for the specified
channel. Select the type of statistic with CALC:FUNC:TYPE. Critical Note:
Parameters
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.

Return Type Character
Example CALCulate2:FUNCtion:DATA?

Overlapped? No
Default Not applicable

CALCulate<cnum>:FUNCtion:DOMain:USER[:RANGe] <range>
(Read-Write) Sets the range used to calculate trace statistics. Each channel shares 10 domain
ranges. The x-axis range is specified with the CALC:FUNC:DOM:USER:START and STOP
commands. Critical Note:
Parameters
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.
<range> Range number. Choose from: 0 to 9

0 is Full Span of the current x-axis range
1 to 9 are user-specified ranges

Examples CALC:FUNC:DOM:USER 4

 calculate2:function:domain:user:range 0

Query Syntax CALCulate<cnum>:FUNCtion:DOMain:USER[:RANGe]?
Return Type Character

Overlapped? No
Default 0 - Full Span

CALCulate<cnum>:FUNCtion:DOMain:USER:STARt <range>, <start>
(Read-Write) Sets the start of the specified user-domain range.
 To apply this range, use CALC:FUNC:DOM:USER
 To set the stop of the range, use CALC:FUNC:DOM:USER:STOP. Critical Note:
Note: This command does the same as CALC:MARK:FUNC:DOM:USER:STAR
Parameters
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.
<range> Range number that will receive the start value. Choose an integer

between 1 and 9
<start> Start value of the specified range. Choose a real number between:

 the analyzer’s Minimum and Maximum x-axis value.

313

Examples CALC:FUNC:DOM:USER:STAR 1,1e9
 calculate2:function:domain:user:start 2,2e9

Query Syntax CALCulate<cnum>:FUNCtion:DOMain:USER:STARt? <range>
Return Type Character

Overlapped? No
Default The analyzer’s Minimum x-axis value

CALCulate<cnum>:FUNCtion:DOMain:USER:STOP <range>, <stop>
(Read-Write) Sets the stop of the specified user-domain range.
 To apply this range, use CALC:FUNC:DOM:USER
 To set the start of the range, use CALC:FUNC:DOM:USER:START
 Critical Note:
Note: This command does the same as CALC:MARK:FUNC:DOM:USER:STOP
Parameters
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.
<range> Range number that will receive the stop value. Choose an integer

between 1 and 9
<stop> Stop value of the specified range. Choose a real number between:

 the analyzer’s Minimum and Maximum x-axis value.

Examples CALC:FUNC:DOM:USER:STOP 4,5e9

 calculate2:function:domain:user:stop 3,8e9

Query Syntax CALCulate<cnum>:FUNCtion:DOMain:USER:STOP? <range>
Return Type Character

Overlapped? No
Default The analyzer’s Maximum x-axis value

CALCulate<cnum>:FUNCtion:STATistics[:STATe] <ON|OFF>
(Read-Write) Displays and hides the measurement (Trace) statistics (peak-to-peak, mean,
standard deviation) on the screen.
The analyzer will display either measurement statistics or Filter Bandwidth statistics; not both.
Critical Note:
Parameters
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.
<ON|OFF> ON - Displays trace statistics

OFF - Hides trace statistics

Examples CALC:FUNC:STAT ON

 calculate2:function:statistics:state off

Query Syntax CALCulate<cnum>:FUNCtion:STATistics[:STATe]?
Return Type Boolean (1 = ON, 0 = OFF)

Overlapped? No

314

Default OFF (0)

CALCulate<cnum>:FUNCtion:TYPE <char>
(Read-Write) Sets statistic TYPE that you can then query using CALC:FUNCtion:DATA?.
Critical Note:
Parameters
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.
<char> Choose from:

 PTPeak - the difference between the max and min data points on the
trace.
 STDEV - standard deviation of all data points on the trace
 MEAN - mean (average) of all data points on the trace

Examples CALC:FUNC:TYPE PTP

 calculate2:function:type stdev

Query Syntax CALCulate<cnum>:FUNCtion:TYPE?
Return Type Character

Overlapped? No
Default PTPeak

Calc:Limit Command

Controls the limit segments used for pass / fail testing.

• Click on a blue keyword to view the command details.
• See a List of all commands in this block.
• Learn about Limit Lines

Note: CALCulate commands act on the selected measurement. You can select one
measurement in each channel. Select the measurement for each channel using CALC:PAR:SEL.

CALCulate<cnum>:LIMit:DATA <block>
(Read-Write) Sets data for limit segments. Critical Note:

315

Parameters
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.
<block> Data for all limit segments in REAL,64 format. The following is the data

format for 1 segment:
 Type,BegStim, EndStim, BegResp,EndResp
Type
Type of limit segment. Choose from
 0 - Off
 1 - Max
 2 - Min

BegStim
Start of X-axis value (freq, power, time)

EndStim
End of X-axis value

BegResp
Y-axis value that corresponds with Start of X-axis value

EndResp
Y-axis value that corresponds with End of X-axis value

Examples The following writes three max limit segments for a bandpass filter.

"CALC:LIM:DATA 1,3e5,4e9,-60,0,1,4e9,7.5e9,0,0,1,7.5e9,9e9,0,-30"

Query Syntax CALCulate<cnum>:LIMit:DATA?
Return Type Definite length block - All 100 predefined limit segments are returned.

Overlapped? No
Default 100 limit segments - all values set to 0

CALCulate<cnum>:LIMit:DISPlay[:STATe] <ON | OFF>
(Read-Write) Turns the display of limit segments ON or OFF (if the data trace is turned ON).
Critical Note:
Parameters
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.
<ON | OFF> ON (or 1) - turns the display of limit segments ON.

 OFF (or 0) - turns the display of limit segments OFF.

Examples CALC:LIM:DISP:STAT ON

 calculate2:limit:display:state off

Query Syntax CALCulate<cnum>:LIMit:DISPlay[:STATe]?
Return Type Boolean (1 = ON, 0 = OFF)

Overlapped? No
Default ON

316

CALCulate<cnum>:LIMit:SEGMent<snum>AMPLitude:STARt <num>
(Read-Write) Sets the start (beginning) of the Y-axis amplitude (response) value. Critical
Note:
Parameters
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.
<snum> Segment number; if unspecified, value is set to 1.
<num> Choose any number between:

 -500 and 500
 Display value is limited to the Maximum and Minimum displayed Y-axis
values.

Examples CALC:LIM:SEGM1:AMPL:STAR 10

 calculate2:limit:segment2:amplitude:start 10

Query Syntax CALCulate<cnum>:LIMit:SEGMent<snum>AMPLitude:STARt?
Return Type Character

Overlapped? No
Default 0

CALCulate<cnum>:LIMit:SEGMent<snum>AMPLitude:STOP <num>
(Read-Write) Sets the stop (end) of the Y-axis amplitude (response) value. Critical Note:
Parameters
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.
<snum> Segment number; if unspecified, value is set to 1.
<num> Choose any number between:

 -500 and 500
 Display value is limited to the Maximum and Minimum displayed Y-axis
values.

Examples CALC:LIM:SEGM1:AMPL:STOP 10

 calculate2:limit:segment2:amplitude:stop 10

Query Syntax CALCulate<cnum>:LIMit:SEGMent<snum>AMPLitude:STOP?
Return Type Character

Overlapped? No
Default 0

CALCulate<cnum>:LIMit:SEGMent<snum>STIMulus:STARt <num>
(Read-Write) Sets the start (beginning) of the X-axis stimulus value. Critical Note:
Parameters
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.
<snum> Segment number; if unspecified, value is set to 1.
<num> Choose any number within the X-axis span of the analyzer.

Examples CALC:LIM:SEGM1:STIM:STAR 10

317

 calculate2:limit:segment2:stimulus:start 10

Query Syntax CALCulate<cnum>:LIMit:SEGMent<snum>STIMulus:STARt?
Return Type Character

Overlapped? No
Default 0

CALCulate<cnum>:LIMit:SEGMent<snum>STIMulus:STOP <num>
(Read-Write) Sets the stop (end) of the X-axis stimulus value. Critical Note:
Parameters
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.
<snum> Segment number; if unspecified, value is set to 1.
<num> Choose any number within the X-axis span of the analyzer.

Examples CALC:LIM:SEGM1:AMPL:STOP 10

 calculate2:limit:segment2:stimulus:stop 10

Query Syntax CALCulate<cnum>:LIMit:SEGMent<snum>STIMulus:STOP?
Return Type Character

Overlapped? No
Default 0

CALCulate<cnum>:LIMit:SEGMent<snum>:TYPE <char>
(Read-Write) Sets the type of limit segment. Critical Note:
Parameters
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.
<snum> Segment number. Choose any number between:

 1 and 100
 If unspecified, value is set to 1.

<char> Choose from:
 LMAX - a MAX limit segment. Any response data exceeding the MAX
value will fail.
 LMIN - a MIN limit segment. Any response data below the MIN value will
fail.
 OFF - the limit segment (display and testing) is turned OFF.

Examples CALC:LIM:SEGM:TYPE LMIN

 calculate2:limit:segment3:type lmax

Query Syntax CALCulate<cnum>:LIMit:SEGMent<snum>:TYPE?
Return Type Character

Overlapped? No
Default OFF

318

CALCulate<cnum>:LIMit:SOUNd[:STATe] <ON | OFF>
(Read-Write) Turns limit testing fail sound ON or OFF. Critical Note:
Parameters
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.
<ON | OFF> ON (or 1) - turns sound ON.

 OFF (or 0) - turns sound OFF.

Examples CALC:LIM:SOUN ON

 calculate2:limit:sound:state off

Query Syntax CALCulate<cnum>:LIMit:SOUNd[:STATe]?
Return Type Boolean (1 = ON, 0 = OFF)

Overlapped? No
Default OFF

CALCulate<cnum>:LIMit:STATe <ON | OFF>
(Read-Write) Turns limit segment testing ON or OFF.
 Use CALC:LIM:DISP to turn ON and OFF the display of limit segments. Critical Note:
Parameters
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.
<ON | OFF> ON (or 1) - turns limit testing ON.

 OFF (or 0) - turns limit testing OFF.

Examples CALC:LIM:STAT ON

 calculate2:limit:state off

Query Syntax CALCulate<cnum>:LIMit:STATe?
Return Type Boolean (1 = ON, 0 = OFF)

Overlapped? No
Default OFF

Calc:Marker Commands

Controls the marker settings used to remotely output specific data to the computer.

319

• Click on a blue keyword to view the command details.
• See a List of all commands in this block.
• See commands for controlling the marker readout number and size
• Learn about Markers

Note: CALCulate commands act on the selected measurement. You can select one
measurement in each channel. Select the measurement for each channel using CALC:PAR:SEL.

Note: The Reference Marker is Marker Number 10

CALCulate<cnum>:MARKer:AOFF
(Write-only) Turns all markers off for selected measurement.
Critical Note:
Parameters
<cnum> Channel number of the measurement. There

must be a selected measurement on that
channel. If unspecified, <cnum> is set to 1.

Examples CALC:MARK:AOFF

 calculate2:marker:aoff

Query Syntax Not applicable

Overlapped? No
Default Not applicable

CALCulate<cnum>:MARKer:BWIDth <num>
(Read-Write) Turns on and sets markers 1 through 4 to calculate filter bandwidth. The <num>
parameter sets the value below the maximum bandwidth peak that establishes the bandwidth
of a filter. For example, if you want to determine the filter bandwidth 3 db below the bandpass
peak value, set <num> to -3.
This feature activates markers 1 through 4. To turn off these markers, either turn them off
individually or turn them All Off.
The analyzer screen will show either Bandwidth statistics OR Trace statistics; not both.
To search a User Range with the bandwidth search, first activate marker 1 and set the desired
User Range. Then send the CALC:MARK:BWID command. The user range used with
bandwidth search only applies to marker 1 searching for the max value. The other markers
may fall outside the user range.
 Critical Note:

320

Parameters
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.
<num> Target value below filter peak. Choose any number between:

 -500 and 500

Examples CALC:MARK:BWID -3

 calculate2:marker:bwidth -2.513

Query Syntax CALCulate<cnum>:MARKer:BWIDth?

 Returns the results of bandwith search:
Return Type Four Character values separated by commas: bandwidth, center

Frequency, Q, loss.

Overlapped? No
Default -3

CALCulate<cnum>:MARKer<mkr>:COUPling[:STATe]<ON|OFF>
(Read-Write) Sets and Reads the state of Coupled Markers (ON and OFF) Critical Note:
Parameters
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.
<mkr> Any existing marker number from 1 to 10; if unspecified, value is set to 1.
<ON|OFF> False (0) - Turns Coupled Markers OFF

True (1) - Turns Coupled Markers ON

Examples CALC:MARK:COUP ON

 calculate2:marker8:coupling off

Query Syntax CALCulate<cnum>:MARKer<mkr>:COUPling:[STATe]?
Return Type Boolean (1 = ON, 0 = OFF)

Overlapped? No
Default OFF

CALCulate<cnum>:MARKer<mkr>:DELTa <ON|OFF>
(Read-Write) Specifies whether marker is relative to the Reference marker or absolute.

Note: The reference marker must already be turned ON with CALC:MARK:REF:STATE.

Critical Note:
Parameters
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.
<mkr> Any existing marker number from 1 to 10; if unspecified, value is set to 1.
<ON|OFF> ON (or 1) - Specified marker is a Delta marker

 OFF (or 0) - Specified marker is an ABSOLUTE marker

Examples CALC:MARK:DELT ON

 calculate2:marker8:delta off

Query Syntax CALCulate<cnum>:MARKer<mkr>:DELTa?
Return Type Boolean (1 = ON, 0 = OFF)

Overlapped? No
Default OFF

321

CALCulate<cnum>:MARKer<mkr>:DISCrete <ON|OFF>
(Read-Write) Makes the specified marker display either a calculated value between data points
(interpolated data) or the actual data points (discrete data). Critical Note:
Parameters
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.
<mkr> Any existing marker number from 1 to 10; if unspecified, value is set to 1.
<ON|OFF> ON (or 1) - Specified marker displays the actual data points

 OFF (or 0) - Specified marker displays calculated data between the
actual data points.

Examples CALC:MARK:DISC ON

 calculate2:marker8:discrete off

Query Syntax CALCulate<cnum>:MARKer<mkr>:DISCrete?
Return Type Boolean (1 = ON, 0 = OFF)

Overlapped? No
Default OFF

CALCulate<cnum>:MARKer<mkr>:FORMat <char>
(Read-Write) Sets the format of the data that will be returned in a marker data query
CALC:MARK:Y? and the displayed value of the marker readout. The selection does not have
to be the same as the measurement’s display format. Critical Note:
Parameters
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.
<mkr> Any marker number from 1 to 10; if unspecified, value is set to 1
<char> Choose from:

 DEFault - The format of the selected measurement
 MLINear - Linear magnitude
 MLOGarithmic - Logarithmic magnitude
 IMPedance - (R+jX)
 ADMittance - (G+jB)
 PHASe - Phase
 IMAGinary - Imaginary part (Im)
 REAL - Real part (Re)l
 POLar - (Re, Im)
 GDELay - Group Delay
LINPhase - Linear Magnitude and Phase
 LOGPhase - Log Magnitude and Phase

Examples CALC:MARK:FORMat MLIN

 calculate2:marker8:format Character

Query Syntax CALCulate<cnum>:MARKer<mkr>:FORMat?
Return Type Character

Overlapped? No
Default DEFault

322

CALCulate<cnum>:MARKer<mkr>:FUNCtion:APEak:EXCursion <num>
(Read-Write) Sets amplitude peak excursion for the specified marker. The Excursion value
determines what is considered a "peak". This command applies to marker peak searches (Next
peak, Peak Right, Peak Left). Critical Note:
Parameters
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.
<mkr> Any existing marker number from 1 to 10; if unspecified, value is set to 1.
<num> Excursion value. Choose any number between -500 and 500.

Note: This command will accept MIN or MAX instead of a numeric
parameter. See SCPI Syntax for more information.

Examples CALC:MARK:FUNC:APE:EXC 10

 calculate2:marker8:function:apeak:excursion maximum

Query Syntax CALCulate<cnum>:MARKer<mkr>:FUNCtion:APEak:EXCursion?
Return Type Character

Overlapped? No
Default 3

CALCulate<cnum>:MARKer<mkr>:FUNCtion:APEak:THReshold <num>
(Read-Write) Sets peak threshold for the specified marker. If a peak (using the criteria set with
:EXCursion) is below this reference value, it will not be considered when searching for peaks.
This command applies to marker peak searches (Next peak, Peak Right, Peak Left). Critical
Note:
Parameters
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.
<mkr> Any marker number from 1 to 10; if unspecified, value is set to 1
<num> Threshold value.Choose any number between -500 and 500.

Note: This command will accept MIN or MAX instead of a numeric
parameter. See SCPI Syntax for more information.

Examples CALC:MARK:FUNC:APE:THR -40

 calculate2:marker8:function:apeak:threshold -55

Query Syntax CALCulate<cnum>:MARKer<mkr>:FUNCtion:APEak:THReshold?
Return Type Character

Overlapped? No
Default -100

CALCulate<cnum>:MARKer<mkr>:FUNCtion:DOMain:USER <range>
(Read-Write) Assigns the specified marker to a range number. The x-axis travel of the marker
is constrained to the range’s span. The span is specified with the
CALC:MARK:FUNC:DOM:USER:START and STOP commands, unless range 0 is specified
which is the full span of the analyzer.
Each channel shares 10 domain ranges. (Trace statistics use the same ranges.) More than
one marker can use a domain range. Critical Note:
Parameters
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.
<mkr> Any marker number from 1 to 10; if unspecified, value is set to 1

323

 User span. Choose any Integer from 0 to 9.
0 is Full Span of the analyzer
 1 to 9 are available for user-defined x-axis span

Examples CALC:MARK:FUNC:DOM:USER 1

 calculate2:marker8:function:domain:user 1

Query Syntax CALCulate<cnum>:MARKer<mkr>:FUNCtion:DOMain:USER?

 Returns the user span number that the specified marker is assigned to.
Return Type Character

Overlapped? No
Default 0 - Full Span

CALCulate<cnum>:MARKer<mkr>:FUNCtion:DOMain:USER:STARt <start>
(Read-Write) Sets the start of the span that the specified marker’s x-axis span will be
constrained to.
 Use CALC:MARK:FUNC:DOM:USER<range> to set range number
 Use CALC:MARK:FUNC:DOM:USER:STOP to set the stop value.

Note: If the marker is assigned to range 0 (full span), the USER:STARt and STOP commands
generate an error. You cannot set the STARt and STOP values for "Full Span".

Note: This command does the same as CALC:FUNC:DOM:USER:STAR

Critical Note:
Parameters
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.
<mkr> Any marker number from 1 to 10; if unspecified, value is set to 1
<start> The analyzer’s Minimum x-axis value

Examples CALC:MARK:FUNC:DOM:USER:START 500E6

 calculate2:marker8:function:domain:user:start 1e12

Query Syntax CALCulate<cnum>:MARKer<mkr>:FUNCtion:DOMain:USER:STARt?
Return Type Character

Overlapped? No
Default The analyzer’s Minimum x-axis value

CALCulate<cnum>:MARKer<mkr>:FUNCtion:DOMain:USER:STOP <stop>
(Read-Write) Sets the stop of the span that the marker’s x-axis travel will be constrained to.
Use CALC:MARK:FUNC:DOM:USER<range> to set range number
 Use CALC:MARK:FUNC:DOM:USER:STARt to set the stop value.

Note: If the marker is assigned to range 0 (full span), the USER:STARt and STOP commands
generate an error. You cannot set the STARt and STOP values for "Full Span".

 Note: This command does the same as CALC:FUNC:DOM:USER:STOP

Critical Note:
Parameters
<cnum> Channel number of the measurement. There must be a selected measurement

on that channel. If unspecified, <cnum> is set to 1.
<mkr> Any marker number from 1 to 10; if unspecified, value is set to 1.
<stop> Stop value of x-axis span; Choose any number between the analyzer’s

MINimum and MAXimum x-axis value.

324

Examples CALC:MARK:FUNC:DOM:USER:STOP 500e6

 calculate2:marker8:function:domain1:user:stop 1e12

Query
Syntax

CALCulate<cnum>:MARKer<mkr>:FUNCtion:DOMain:USER:STOP?

Return
Type

Character

Overlapped
?

No

Default The analyzer’s MAXimum x-axis value.

CALCulate<cnum>:MARKer<mkr>:FUNCtion:EXECute [<func>]
(Write-only) Immediately executes (performs) the specified search function. If no function is
specified, executes the selected function. Select the function with CALC:MARK:FUNCtion:SEL.
Critical Note:
Parameters
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.
<mkr> Any marker number from 1 to 10; if unspecified, value is set to 1.
<func> Optional argument. The function that is to be performed. Choose from:

MAXimum - finds the highest value
 MINimum - finds the lowest value
 RPEak - finds the next valid peak to the right
 LPEak - finds the next valid peak to the left
 NPEak - finds the next highest value among the valid peaks
 TARGet - finds the target value to the right, wraps around to the left
 LTARget - finds the next target value to the left of the marker
 RTARget - finds the next target value to the right of the marker

Examples CALC:MARK:FUNC:EXEC

 calculate2:marker2:function:execute maximum

Query Syntax Not applicable

Overlapped? No
Default Not applicable

CALCulate<cnum>:MARKer<mkr>:FUNCtion[:SELect] <char>
(Read-Write) Sets the search function that the specified marker will perform when executed. To
execute (or perform) the function, use:
 CALC:MARK:FUNC:EXEC or
 CALC:MARK:FUNC:TRAC ON to automatically execute the search every sweep. Critical
Note:
Parameters
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.
<mkr> Any marker number from 1 to 10; if unspecified, value is set to 1.
<char> Marker function. Choose from:

MAXimum - finds the highest value
 MINimum - finds the lowest value
 RPEak - finds the next valid peak to the right
 LPEak - finds the next valid peak to the left

325

 NPEak - finds the next highest value among the valid peaks
 TARGet - finds the target value to the right; wraps around to the left
 LTARget - finds the next target value to the left of the marker
 RTARget - finds the next target value to the right of the marker

Examples CALC:MARK:FUNC MAX

 calculate2:marker8:function:select ltarget

Query Syntax CALCulate<cnum>:MARKer<mkr>:FUNCtion[:SELect]?

Overlapped? No
Default MAX

CALCulate<cnum>:MARKer<mkr>:TARGet <num>
(Read-Write) Sets the target value for the specified marker when doing Target Searches
(CALC:MARK:FUNC:SEL <TARGet | RTARget | LTARget> Critical Note:
Parameters
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.
<mkr> Any marker number from 1 to 10; if unspecified, value is set to 1.
<num> Target value to search for; Units are NOT allowed.

Examples CALC:MARK:TARG 2.5

 calculate2:marker8:target -10.3

Query Syntax CALCulate<cnum>:MARKer<mkr>:TARGet?
Return Type Character

Overlapped? No
Default 0

CALCulate<cnum>:MARKer<mkr>:FUNCtion:TRACking <ON | OFF>
(Read-Write) Sets the tracking capability for the specified marker. The tracking function finds
the selected search function every sweep. In effect, turning Tracking ON is the same as doing
a CALC:MARK:FUNC:EXECute command every sweep. Critical Note:
Parameters
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.
<mkr> Any marker number from 1 to 10; if unspecified, value is set to 1.
<ON | OFF> ON (or 1) - The specified marker will "Track" (find) the selected function

every sweep.
OFF (or 0) - The specified marker will find the selected function only
when the CALC:MARK:FUNC:EXECute command is sent.

Examples CALC:MARK:FUNC:TRAC ON

 calculate2:marker8:function:tracking off

Query Syntax CALCulate<cnum>:MARKer<mkr>:FUNCtion:TRACking?
Return Type Boolean (1 = ON, 0 = OFF)

Overlapped? No
Default OFF

326

CALCulate<cnum>:MARKer:REFerence[:STATe] <ON | OFF>
(Read-Write) Turns the reference marker (marker 10) ON or OFF. When turned OFF, existing
Delta markers revert to absolute markers. Critical Note:
Parameters
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.
<ON | OFF> ON (or 1) - turns reference marker ON

 OFF (or 0) - turns reference marker ON

Examples CALC:MARK:REF ON

 calculate2:marker:reference:state OFF

Query Syntax CALCulate<cnum>:MARKer:REFerence[:STATe]?
Return Type Boolean (1 = ON, 0 = OFF)

Overlapped? No
Default OFF

CALCulate<cnum>:MARKer:REFerence:X <num>
(Read-Write) Sets and returns the absolute x-axis value of the reference marker (marker 10).
Critical Note:
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.
<num> X-axis value. Choose any number within the operating domain of the

reference marker.
Examples CALC:MARK:REF:X 1e9

calculate2:marker:reference:x 1e6

Query Syntax CALCulate<cnum>:MARKer:REFerence:X?
Return Type Character

Overlapped? No
Default If the first Marker, turns ON in the middle of the X-axis span. If not, turns

ON at the position of the active marker.

CALCulate<cnum>:MARKer:REFerence:Y?
(Read-only) Returns the absolute Y-axis value of the reference marker. Critical Note:
Parameters
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.

Examples CALC:MARK:REF:Y?

calculate2:marker:reference:y?

Return Type Character

Overlapped? No
Default Not applicable

CALCulate<cnum>:MARKer<mkr>:TYPE <char>
(Read-Write) Sets the type of the specified marker. Critical Note:
Parameters

327

<cnum> Channel number of the measurement. There must be a selected
measurement on that channel. If unspecified, <cnum> is set to 1.

<mkr> Any marker number from 1 to 10; if unspecified, value is set to 1
<char> Choose from:

 NORMal - a marker that stays on the assigned X-axis position unless
moved or searching.
 FIXed - a marker that will not leave the assigned X or current Y-axis
position.

Examples CALC:MARK:TYPE NORM

 calculate2:marker2:type fixed

Query Syntax CALCulate<cnum>:MARKer<mkr>:TYPE?
Return Type Character

Overlapped? No
Default NORMal

CALCulate<cnum>:MARKer<mkr>:SET <char>
(Read-Write) Sets the selected instrument setting to assume the value of the specified marker.
Critical Note:
Parameters
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.
<mkr> Any marker number from 1 to 10; if unspecified, value is set to 1
<char> Choose from:

 CENTer - changes center frequency to the value of the marker
 SPAN - changes the frequency span to the value of the marker’s
domain
 STARt - changes the start frequency to the value of the marker
 STOP - changes the stop frequency to the value of the marker
 RLEVel - changes the reference level to the value of the marker
 DELay - changes the xxx delay to the value of the marker

Examples CALC:MARK:SET CENT

 calculate2:marker8:set span

Query Syntax CALCulate<cnum>:MARKer<mkr>:SET?
Return Type Character

Overlapped? No
Default Not applicable

CALCulate<cnum>:MARKer<mkr>[:STATe] <ON|OFF>
(Read-Write) Turns the specified marker ON or OFF. Marker 10 is the Reference Marker. To
turn all markers off, use CALC:MARK:AOFF. Critical Note:
Parameters
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.
<mkr> Any marker number from 1 to 10; if unspecified, value is set to 1.
<ON|OFF> ON (or 1) - turns marker ON.

 OFF (or 0) - turns marker OFF.

Examples CALC:MARK ON

328

 calculate2:marker8 on

Query Syntax CALCulate<cnum>:MARKer<mkr>:STATe?
Return Type Boolean (1 = ON, 0 = OFF)

Overlapped? No
Default Off

CALCulate<cnum>:MARKer<mkr>:X <num>
(Read-Write) Sets the marker’s X-axis value (frequency, power, or time). If the marker is set as
delta, the SET and QUERY data is relative to the reference marker. Critical Note:
Parameters
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.
<mkr> Any marker number from 1 to 10; if unspecified, value is set to 1.
<num> Any X-axis position within the measurement span of the marker.

Note: This command will accept MIN or MAX instead of a numeric
parameter. See SCPI Syntax for more information.

Examples CALC:MARK:X 100Mhz

 calculate2:marker8:x maximum

Query Syntax CALCulate<cnum>:MARKer<mkr>:X?
Return Type Character

Overlapped? No
Default First Marker turns ON in the middle of the X-axis span. Subsequent

markers turn ON at the position of the active marker.

CALCulate<cnum>:MARKer<mkr>:Y?
(Read-only) Reads the marker’s Y-axis value. The format of the value depends on the current
CALC:MARKER:FORMAT setting. If the marker is set as delta, the data is relative to the
reference marker. The query always returns two numbers:

• Smith and Polar formats - (Real, Imaginary)
• LINPhase and LOGPhase - (Real, Imaginary)
• All other formats - (Value,0)

 Critical Note:
Parameters
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.
<mkr> Any marker number from 1 to 10; if unspecified, value is set to 1.

Examples CALC:MARK:Y?

 calculate2:marker3:y?

Query Syntax CALCulate<cnum>:MARKer<mkr>:Y?
Return Type Character

Overlapped? No
Default Not applicable

329

Calc:Math Command

Controls math operations on the currently selected measurement and memory.

• Click on a blue keyword to view the command details.
• See a List of all commands in this block.
• Learn about Math Operations

Note: CALCulate commands act on the selected measurement. You can select one
measurement in each channel. Select the measurement for each channel using CALC:PAR:SEL.

CALCulate<cnum>:MATH:FUNCtion <char>
(Read-Write) Sets math operations on the currently selected measurement and the trace
stored in memory. (There MUST be a trace stored in Memory. See CALC:MATH MEM) Critical
Note:
Parameters
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.
<char> The math operation to be applied. Choose from the following:

NORMal Trace data only
ADD Data + Memory
SUBTract Data - Memory
MULTiply Data * Memory
DIVide Data / Memory

Examples CALC:MATH:FUNC NORM

 calculate2:math:function subtract

Query Syntax CALCulate<cnum>:MATH:FUNCtion?
Return Type Character

Overlapped? No
Default NORMal

CALCulate<cnum>:MATH:MEMorize
(Write-only) Puts the currently selected measurement trace into memory. (Data-> Memory)
Critical Note:
Parameters
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.

Examples CALC:MATH:MEM

 calculate2:math:memorize

Query Syntax Not applicable

330

Overlapped? No
Default Not applicable

Calc:Normalize Commands

Specifies the normalization features used for a receiver power calibration.

• Click on a blue keyword to view the command details.
• See a List of all commands in this block.
• Learn about Receiver Cal

Save and recall your receiver power calibration (which use .CST file commands):
• SENS:CORR:CSET:SAVE
• SENS:CORR:CSET[:SEL]

Or use these two commands and specify either .STA or .CST file extensions:
• MMEM:LOAD
• MMEM:STOR

Note: CALCulate commands act on the selected measurement. You can select one
measurement in each channel. Select the measurement for each channel using CALC:PAR:SEL.

CALCulate<cnum>:NORMalize[:IMMediate]
(Read-Write) Stores the selected measurement’s data to that measurement’s “divisor” buffer
for use by the Normalization data processing algorithm. This command is not compatible with
ratioed measurements such as S-parameters. It is intended for receiver power calibration when
the selected measurement is of an unratioed power type. Critical Note:
Parameters
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.

Examples CALC:NORM

 calculate1:normalize:immediate

Query Syntax Not Applicable

Overlapped? No
Default Not Applicable

331

CALCulate<cnum>:NORMalize:STATe <ON | OFF>
(Read-Write) Specifies whether or not normalization is applied to the measurement.
Normalization is enabled only for measurements of unratioed power where it serves as a
receiver power calibration. Critical Note:
Parameters
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.
<ON | OFF> ON (or 1) - normalization is applied to the measurement.

OFF (or 0) – normalization is NOT applied to the measurement.

Examples CALC:NORM:STAT ON

 calculate2:normalize:state off

Query Syntax CALCulate<cnum>:NORMalize:STATe?
Return Type Boolean (1 = ON, 0 = OFF)

Overlapped? No
Default OFF

CALCulate<cnum>:NORMalize:INTerpolate[:STATe] <ON | OFF>
(Read-Write) Turns normalization interpolation ON or OFF. Normalization is enabled only for
measurements of unratioed power, where it serves as a receiver power calibration. Critical
Note:
Parameters
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.
<ON | OFF> ON (or 1) – turns interpolation ON.

OFF (or 0) – turns interpolation OFF.

Examples CALC:NORM:INT ON

 calculate2:normalize:interpolate:state off

Query Syntax CALCulate<cnum>:NORMalize:INTerpolate[:STATe]?
Return Type Boolean (1 = ON, 0 = OFF)

Overlapped? No
Default ON

Calc:Parameter Commands

Lists, creates, selects and deletes measurements

332

• Click on a blue keyword to view the command details.
• See a List of all commands in this block.
• Learn about Measurement Parameters

Note: CALCulate commands act on the selected measurement. You can select one
measurement in each channel. Select the measurement for each channel using CALC:PAR:SEL.

CALCulate<cnum>:PARameter:CATalog?
(Read-only) Returns the names and parameters of existing measurements for the specified
channel. Critical Note:
Parameters
<cnum> Channel number of the measurements to be listed. If unspecified,

<cnum> is set to 1.

Examples CALC:PAR:CAT?

 calculate2:parameter:catalog?

Query Syntax CALCulate<cnum>:PARameter:CATalog?
Return Type String - "<measurement name>,<parameter>,[<measurement

name>,<parameter>...]"

Overlapped? No
Default "CH1_S11_1,S11"

CALCulate<cnum>:PARameter:DEFine <Mname>,<param>[,load]
(Write-only) Creates a measurement but does NOT display it.

• Use DISP:WIND:STATe to create a window if it doesn’t already exist.
• Use DISP:WIND<wnum>:TRAC<tnum>:FEED <Mname> to display the measurement.

You must select the measurement (CALC<cnum>:PAR:SEL <mname>) before making additional
settings. Critical Note:
Parameters
<cnum> Channel number of the new measurement. Choose any number between:

 1 and 4
 If unspecified, value is set to 1.

<Mname> Name of the measurement. Any non-empty, unique string, enclosed in quotes.
<param> Parameter

Choose from the following for S-Parameter measurements
S11 | S22 | S12 | S21
For 3-port analyzers only:
S33 | S13 | S31 | S23 | S32

For the following non S-Parameter measurements, Specify the source port with:
SENSe:SWEep:SRCPort <1|2>)

Choose from the following for non-ratioed measurements:

333

 A | B | C | R1 | R2

Choose from the following for ratioed measurements:

<param> Description
AB A/B
AC A/C - 3 port analyzers only
BA B/A
BC B/C - 3 port analyzers only
CA C/A - 3 port analyzers only
CB C/B - 3 port analyzers only
AR1 A/R1
BR1 B/R1
CR1 C/R1 - 3 port analyzers only
AR2 A/R2
BR2 B/R2
R1A R1/A
R2A R2/A
R1B R1/B
R2B R2/B
R1C R1/C - 3 port analyzers only
R2R1 R2/R1
R1R2 R1/R2

[load] Optional argument; specifies the device port which will provide the load for the
measurement (Multi-port reflection measurements only). This argument is
ignored if a transmission S-parameter is specified.)

Examples CALC:PAR:DEF ’Test’,S12

 calculate2:parameter:define ’test’,s22

CALC4:PAR:DEF ’ch4_S33’,S33,2 ’Defines an S33 measurement with a load on
port2 of the analyzer.

Query Syntax Not Applicable; see Calc:Par:Cat?

Overlapped? No
Default Not Applicable

CALCulate<cnum>:PARameter:DELete [:NAME]<Mname>
 (Write-only) Deletes the specified measurement. Critical Note:
Parameters
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.
<Mname> String - Name of the measurement

Examples CALC:PAR:DEL ’TEST’

 calculate2:parameter:delete ’test’

Query Syntax Not Applicable

334

Overlapped? No
Default Not Applicable

CALCulate<cnum>:PARameter:DELete:ALL
 (Write-only) Deletes all specified measurements. Critical Note:
Parameters
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.

Examples CALC:PAR:DEL:ALL

 calculate2:parameter:delete:all

Query Syntax Not Applicable

Overlapped? No
Default Not Applicable

CALCulate<cnum>:PARameter:MNUMber?
(Read-only) Returns the measurement number of the selected measurement. This is useful
when needing to identify a measurement by number, such as with Status:Ques:Lim or
Status:Oper:Aver commands. Critical Note:
Parameters
<cnum> Channel number of the measurement. If unspecified, <cnum> is set to 1.

Examples CALC:PAR:MNUM?

 calculate2:parameter:mnumber?

Query Syntax CALCulate<cnum>:PARameter:MNUMber?
Return Type Integer

Overlapped? No
Default Not Applicable

CALCulate<>:PARameter:MNUMber <>
(Read-Write)
Parameters
<> .
<>

Examples

Query Syntax
Return Type

Overlapped?
Default

CALCulate<cnum>:PARameter:SELect <Mname>
(Read-Write) Sets the selected measurement. Most CALC: commands require that this
command be sent before a setting change is made. One measurement on each channel can
be selected at the same time. To obtain a list of currently named measurements, use

335

CALC:PAR:CAT? Critical Note:
Parameters
<cnum> Channel number of the measurement to be selected. If unspecified, <cnum>

is set to 1.
<Mname> String - Name of the measurement. (Do NOT include the parameter name.)

Examples CALC:PAR:SEL ’TEST’

 calculate2:parameter:select ’test’

Query Syntax CALCulate:PARameter:SELect?
Return Type String

Overlapped? No
Default No Selection

Calc:RData Command

Generally when you query the analyzer for data, you expect that the number of data values
returned will be consistent with the number of points in the sweep.
However, if you query receiver data while the instrument is sweeping, the returned values may
contain zeros. For example, if your request for receiver data is handled on the 45th point of a 201
point sweep, the first 45 values will be valid data, and the remainder will contain complex zero.
This can be avoided by synchronizing this request with the end of a sweep or putting the channel
in hold mode.
Learn about Unratioed Measurements

Note: CALCulate commands act on the selected measurement. You can select one
measurement in each channel. Select the measurement for each channel using CALC:PAR:SEL.

CALCulate<cnum>:RDATA? <char>
(Read-only) Returns receiver data for the selected measurement. To query measurement data,
see CALC:DATA? Critical Note:
Parameters
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.
<char> Choose from receivers:

 A
 B
 R1
 R2
 REF - returns either R1 or R2 data depending on the source port of the
CALC-selected measurement.

Example GPIB.Write "INITiate:CONTinuous OFF"
 GPIB.Write "INITiate:IMMediate;*wai"
 GPIB.Write "CALCulate:RDATA? A"

Return Type Character - Two numbers per data point

Overlapped? No
Default Not Applicable

336

List of all commands in this block:
 (Parameters in bold italics)
:CALCulate1:RDATA? A

Calc:Smoothing Commands

Controls point-to-point smoothing. Smoothing is a noise reduction technique that averages
adjacent data points in a measurement trace. Choose the amount of smoothing by specifying
either the number of points or the aperture. Smoothing is not the same as CALC:AVERage which
averages each data point over a number of sweeps.

• Click on a blue keyword to view the command details.
• See a List of all commands in this block.
• See an example using some of these commands.
• Learn about Smoothing

Note: CALCulate commands act on the selected measurement. You can select one
measurement in each channel. Select the measurement for each channel using CALC:PAR:SEL.

CALCulate<cnum>:SMOothing:APERture <num>
(Read-Write) Sets the amount of smoothing as a percentage of the number of data points in
the channel. Critical Note:
Parameters
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.
<num> Percentage value. Choose any number between:

 1 and 25

Examples CALC:SMO:APER 2

 calculate2:smoothing:aperture 20.7

Query Syntax CALCulate<cnum>:SMOothing:APERture?
Return Type Character

Overlapped? No
Default 1.5

CALCulate<cnum>:SMOothing:POINts <num>
(Read-Write) Sets the number of adjacent data points to average. Critical Note:
Parameters
<cnum> Channel number of the measurement. There must be a selected

337

measurement on that channel. If unspecified, <cnum> is set to 1.
<num> Number of points from 1 point to maximum of 25% of data points in the

channel. For example: if number of points in a data trace = 401, the
maximum value for points = 100. The points value is always rounded to
the closest odd number.

Examples CALC:SMO:POIN 50

 calculate2:smoothing:points 21

Query Syntax CALCulate<cnum>:SMOothing:POINts?
Return Type Character

Overlapped? No
Default 3

CALCulate<cnum>:SMOothing[:STATe] <ON | OFF>
(Read-Write) Turns data smoothing ON or OFF. Critical Note:
Parameters
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.
<ON | OFF> ON (or 1) - turns smoothing ON.

 OFF (or 0) - turns smoothing OFF.

Examples CALC:SMO ON

 calculate2:smoothing:state off

Query Syntax CALCulate<cnum>:SMOothing[:STATe]?
Return Type Boolean (1 = ON, 0 = OFF)

Overlapped? No
Default OFF

Calc:Transform Commands

Specifies the settings for time domain transform.

• Click on a blue keyword to view the command details.
• See a List of all commands in this block.
• Learn about Time Domain

Note: CALCulate commands act on the selected measurement. You can select one

338

measurement in each channel. Select the measurement for each channel using CALC:PAR:SEL.

CALCulate<cnum>:TRANsform:TIME:CENTer <num>
(Read-Write) Sets the center time for time domain measurements. Critical Note:
Parameters
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.
<num> Center time in seconds; any number between:

 ± (number of points-1) / frequency span
Note: This command will accept MIN or MAX instead of a numeric
parameter. See SCPI Syntax for more information.

Examples CALC:TRAN:TIME:CENT 1e-8

 calculate2:transform:time:center 15 ps

Query Syntax CALCulate<cnum>:TRANsform:TIME:CENTer?
Return Type Character

Overlapped? No
Default 0

CALCulate<cnum>:TRANsform:TIME:IMPulse:WIDTh <num>
(Read-Write) Sets the impulse width for the transform window. Critical Note:
Parameters
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.
<num> Impulse width in seconds; Choose any number between:

 .6 / frequency span and 1.39 / frequency span

Examples CALC:TRAN:TIME:IMP:WIDTh 10

 calculate2:transform:time:impulse:width 13

Query Syntax CALCulate<cnum>:TRANsform:TIME:IMPulse:WIDTh?
Return Type Character

Overlapped? No
Default .98 / Default Span

CALCulate<cnum>:TRANsform:TIME:KBESsel <num>
(Read-Write) Sets the parametric window for the Kaiser Bessel window. Critical Note:
Parameters
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.
<num> Window width for Kaiser Bessel in seconds; Choose any number

between:
 0.0 and 13.0

339

Examples CALC:TRAN:TIME:KBES 10
 calculate2:transform:time:kbessel 13

Query Syntax CALCulate<cnum>:TRANsform:TIME:KBESsel?
Return Type Character

Overlapped? No
Default 6

CALCulate<cnum>:TRANsform:TIME:LPFREQuency
(Write-only) Sets the start frequencies in LowPass Mode. Critical Note:
Parameters
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.

Examples CALC:TRAN:TIME:LPFR

 calculate2:transform:time:lpfrequency

Query Syntax Not applicable

Overlapped? No
Default Not applicable

CALCulate<cnum>:TRANsform:TIME:SPAN <num>
(Read-Write) Sets the span time for time domain measurements. Critical Note:
Parameters
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.
<num> Span time in seconds; any number between:

 0 and 2* [(number of points-1) / frequency span]
Note: This command will accept MIN or MAX instead of a numeric
parameter. See SCPI Syntax for more information.

Examples CALC:TRAN:TIME:SPAN 1e-8

 calculate2:transform:time:span maximum

Query Syntax CALCulate<cnum>:TRANsform:TIME:SPAN?
Return Type Character

Overlapped? No
Default 20 ns

CALCulate<cnum>:TRANsform:TIME:STARt <num>
(Read-Write) Sets the start time for time domain measurements. Critical Note:
Parameters
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.

340

<num> Start time in seconds; any number between:
 ± (number of points-1) / frequency span
Note: This command will accept MIN or MAX instead of a numeric
parameter. See SCPI Syntax for more information.

Examples CALC:TRAN:TIME:STAR 1e-8

 calculate2:transform:time:start minimum

Query Syntax CALCulate<cnum>:TRANsform:TIME:STARt?
Return Type Character

Overlapped? No
Default -10 ns

CALCulate<cnum>:TRANsform:TIME:STATe <ON | OFF>
(Read-Write) Turns the time domain transform capability ON or OFF. Critical Note:
Note: Sweep type must be set to Linear Frequency in order to use Time Domain Transform.
Parameters
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.
<ON|OFF> ON (or 1) - turns time domain ON.

 OFF (or 0) - turns time domain OFF.

Examples CALC:TRAN:TIME:STAT ON

 calculate2:transform:time:state off

Query Syntax CALCulate<cnum>:TRANsform:TIME:STATe?
Return Type Boolean (1 = ON, 0 = OFF)

Overlapped? No
Default OFF

CALCulate<cnum>:TRANsform:TIME:STOP <num>
(Read-Write) Sets the stop time for time domain measurements. Critical Note:
Parameters
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.
<num> Stop time in seconds; any number between:

 ± (number of points-1) / frequency span
Note: This command will accept MIN or MAX instead of a numeric
parameter. See SCPI Syntax for more information.

Examples CALC:TRAN:TIME:STOP 1e-8

 calculate2:transform:time:stop maximum

Query Syntax CALCulate<cnum>:TRANsform:TIME:STOP?
Return Type Character

Overlapped? No
Default 10 ns

341

CALCulate<cnum>:TRANsform:TIME:STEP:RTIMe <num>
(Read-Write) Sets the step rise time for the transform window. Critical Note:
Parameters
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.
<num> Rise time in seconds; Choose any number between:

 .45 / frequency span and 1.48 / frequency span

Examples CALC:TRAN:TIME:STEP:RTIM 1e-8

 calculate2:transform:time:step:rtime 15 ps

Query Syntax CALCulate<cnum>:TRANsform:TIME:STEP:RTIMe?
Return Type Character

Overlapped? No
Default .99 / Default Span

CALCulate<cnum>:TRANsform:TIME:STIMulus <char>
(Read-Write) Sets the type of simulated stimulus that will be incident on the DUT. Critical
Note:
Parameters
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.
<char> Choose from:

 STEP - simulates a step DUT stimulus
 IMPulse - simulates a pulse DUT stimulus

STEP can ONLY be used when CALC:TRAN:TIME:TYPE is set to LPASs
(Lowpass). (STEP cannot be used with TYPE = BPASs.)

:STIM STEP will set :TYPE to LPASs
:TYPE BPASs will set :STIM to IMPulse

Examples CALC:TRAN:TIME:STIM STEP

 calculate2:transform:time:stimulus impulse

Query Syntax CALCulate<cnum>:TRANsform:TIME:STIMulus?
Return Type Character

Overlapped? No
Default IMPulse

CALCulate<cnum>:TRANsform:TIME[:TYPE] <char>
(Read-Write) Sets the type of time domain measurement. Critical Note:
Parameters
<cnum> Channel number of the measurement. There must be a selected

measurement on that channel. If unspecified, <cnum> is set to 1.
<char> Type of measurement. Choose from:

 LPASs - Lowpass; Must also send CALC:TRAN:TIME:LPFRequency

342

before calibrating.
 BPASs - Bandpass;

BPASs can only be used when CALC:TRAN:TIME:STIM is set to
IMPulse. (BPASs cannot be used with :STIM = STEP)

:STIM STEP will set :TYPE to LPASs
:TYPE BPASs will set :STIM to IMPulse

Examples CALC:TRAN:TIME LPAS

 calculate2:transform:time:type bpas

Query Syntax CALCulate<cnum>:TRANsform:TIME[:TYPE]?
Return Type Character

Overlapped? No
Default BPAS

Control Commands

Specifies the settings to remotely control the rear panel connectors.

• Click on a blue keyword to view the command details.
• See a List of all SCPI commands.
• See a pinout and detailed description of the rear panel connectors:

• Auxilliary IO connector
• External Test Set IO connector

343

• Material Handler IO connector

CONTrol:AUXiliary:C[:DATA] <num>
(Read-Write) Reads and writes a 4-bit value to Port C on the Aux I/O connector. This port is
connected internally to the Handler IO connector. Therefore this command will also affect the
state of Port C on the Handler IO
Parameters
<num> Data value. Choose any number 0 to 15.

Examples CONTrol:AUXiliary:C:DATA 15

For Positive Logic Port C lines C0, C1, C2, C3 go High
or if in Negative Logic they go Low.

CONTrol:AUXiliary:C:DATA?

A returned value of 15 when in Positive Logic indicates Port C lines C0,
C1, C2, C3 are High, or if in Negative Logic they are Low.

Query Syntax CONTrol:AUXiliary:C:DATA?
Return Type Integer

Overlapped? No
Default 0

CONTrol:AUXiliary:C:LOGic <char>
(Read-Write) Reads and writes the logic mode of Port C on the AUX IO. This port is connected
to Port C of the Handler IO connector. Therefore, it will have the same logic setting.
Parameters
<char> Logic of Port C. Choose from:

POSitive - when a value of one is written the associate line goes High
NEGative - when a value of one is written the associate line goes Low
When Port C is in Output/Write mode, a change in logic causes the
output lines to change state immediately. For example, Low levels
change to High levels.
When Port C is in Input/Read mode, a change in logic does NOT cause
the lines to change, but data read from Port C will reflect the change in
logic.

Examples CONT:AUX:C:LOG POS ’Positive logic is applied to Port C data.

Query Syntax CONTrol:AUXiliary:C:LOGic?
Return Type Character

Overlapped? No
Default NEGative

CONTrol:AUXiliary:C:MODE <char>
(Read-Write) Sets Port C to read or write mode. This port is connected to Port C of the Handler
IO connector. Therefore, it will have the same mode setting.
NOTE: When Port C is set to INPut mode, data writes are NOT applied to the lines. MODE
must be set to OUTPut mode before writing.
Parameters
<char> INPut - set the port for reading

OUTPut - set the port for writing

344

Examples CONT:AUX:C:MOD INP ’set Port C to Input Mode for

reading.

CONTrol:AUXiliary:C:MODE? ’queries the input/output mode that the port
set to.

Query Syntax CONTrol:AUXiliary:C:MODE?
Return Type Character

Overlapped? No
Default INPut

CONTrol:AUXiliary:FOOTswitch?
(Read) Reads the Auxiliary connector Footswitch Input (pin 20 of the AUX IO connector).
Examples CONT:AUX:FOOT?

 control:auxiliary:footswitch?

Return Type Boolean

True (or 1) = pressed
False (or 0) = released

Overlapped? No
Default False (0) - Released

CONTrol:AUXiliary:FOOTswitch:MODe <IGNore| SWEep| RECall |MACRo>
(Read-Write) This command sets the mode of the "FootSwitch In" line on the Auxiliary IO.
These mode settings determine what occurs when the footswitch is pressed. Examine your
results carefully when using these command modes. Refer to each mode description and
associated notes, also see the FootSwitch In pin description in the Auxiliary IO connector
documentation.
Parameters

IGNore - While in this mode any Footswitch presses are ignored.
SWEep - While in this mode a Footswitch press will trigger the sweep.

NOTE: The instrument must be in Manual Trigger Mode.

RECall - While in this mode a Footswitch press will recall an instrument
state. When more than one state are available each footswitch press
recalls the next state, then starts over from the beginning.

NOTE: It’s possible to override the current mode with a recalled state.
For instance when the current footswitch mode is RECall and the
footswitch mode in the recalled state is IGNore the mode will change to
IGNore. If this occurs additional footswitch presses will be ignored.

MACRo - While in this mode a Footswitch press will load and run a
macro. When more than one macro are available each successive
footswitch press loads and runs the next macro, then starts over from the
beginning.
NOTE: It’s possible to override the current mode when using the MACRo
mode. For instance with the current footswitch mode set to MACRo and
then running a macro containing a Preset the Preset will change the
mode to IGNore because the default-preset mode is IGNore. If this
occurs additional footswitch presses will be ignored.

Examples CONT:AUX:FOOT:MODe MACRo This sets the footswitch mode

to MACRo causing a macro to be loaded and run with a
footswitch press.

345

CONTrol:AUXiliary:FOOTswitch:MODe? This query returns the
footswitch mode setting.

Query Syntax CONTrol:AUXiliary:FOOTswitch:MODE?
Return Type Character IGNore or SWEep or RECall or MACRo

Overlapped? No
Default IGNore

CONTrol:AUXiliary:INPut:VOLTage?
(Read-Only) Reads the ADC input voltage from pin 14 of the AUX IO connector.
Examples CONT:AUX:INPut:VOLT?

 control:auxiliary:input:voltage?

Return Type REAL
Overlapped? No
Default Not Applicable

CONTrol:AUXiliary:OUTPut[1|2]:MODe <WAIT|NOWait>
(Read-Write) This command sets the mode of the selected "Analog Out" line on the Auxiliary
IO. The modes give the user the option to have the requested voltage applied immediately or
not until the sweep is done. Also see the description for "Analog Out 1, 2" in the Auxilliary IO
connector documentation.
Parameters

WAIT - While in this mode any voltage changes sent to the selected
analog out will only get applied to the output between sweeps.
NOWait - While in this mode any voltage changes sent to the selected
analog out will occur right away without waiting until the end of a sweep.

Examples CONT:AUX:OUTP1:MOD WAIT This sets the mode so that

voltages sent to "Analog Out 1" are only applied at
the end of a sweep.

CONT:AUX:OUTP2:MOD? This query returns the current mode for
"Analog Out 2".

Query Syntax CONTrol:AUXiliary:OUTPut2:MODe?

’Reads the output mode
Return Type Char WAIT or NOWait

Overlapped? No
Default WAIT

CONTrol:AUXiliary:OUTPut<out>:VOLTage <num>
(Read-Write) Sets and reads voltages on the DAC/Analog Output 1 and Output 2 (pins 2 and
3) of the Auxiliary IO connector.
Parameters
<out> DAC output number. Choose from:

1 - DAC Output 1 (pin 2)
2 - DAC Output 2 (pin 3)

<num> Output Voltage. Choose a voltage value between -10 and +10 volts

346

Examples CONT:AUX:OUTP1:VOLT 5
 control:auxiliary:output2:voltage 5

Query Syntax CONTrol:AUXiliary:OUTPut<out>:VOLTage?

’Reads the output DAC voltage
Return Type REAL

Overlapped? No
Default 0

CONTrol:AUXiliary:PASSfail:LOGic <char>
(Read-Write) Sets the logic of the PassFail line (pin 12) on the AUX IO connector. This line is
connected internally to the PassFail line of the Material Handler IO (pin 33).
Parameters
<char> Choose from:

 POSitive - Causes the PassFail line to have positive logic (high = pass,
low = fail).
NEGative - Causes the PassFail line to have negative logic (high = fail,
low = pass).

Examples CONT:AUX:PASS:LOG POS

 control:auxiliary:passfail:logic negative

Query Syntax CONTrol:AUXiliary:PASSfail:LOGic?
Return Type Character

Overlapped? No
Default POSitive

CONTrol:AUXiliary:PASSfail:MODe <char>
(Read-Write) Sets and reads the mode for the PassFail line (pin 12) on the AUX IO connector.
This line is hardwired to the PassFail line (pin 33) of the Material Handler IO connector.
Parameters
<char> Choose from:

 PASS - the line stays in PASS state. When a device fails, then the line
goes to FAIL state after the SweepEnd line is asserted.
FAIL - the line stays in FAIL state. When a device passes, then the line
goes to PASS state after the SweepEnd line is asserted.
NOWait - the line stays in PASS state. When a device fails, then the line
goes to FAIL state IMMEDIATELY.

Examples CONT:AUX:PASS:MODE NOW

 control:auxiliary:passfail:mode fail

Query Syntax CONTrol:AUXiliary:PASSfail:MODE?
Return Type Character

Overlapped? No
Default NOWait

CONTrol:AUXiliary:PASSfail:SCOPe <char>
(Read-Write) Sets and reads the scope of the PassFail line on the AUX IO connector. This line
is connected to the PassFail line of the Handler IO connector. Therefore, it will have the same

347

scope.
Parameters
<char> Choose from:

 Channel - The PassFail line returns to its default state before sweeps on
the next channel start. (A channel measurement may require several
sweeps.)
Global - The PassFail line returns to its default state before the sweeps
for the next triggerable channel start.
The default state of the passFail line (before a measurement occurs and
after a failure occurs) is set by CONTrol:AUXiliary:PASSfail:MODe

Examples CONT:AUX:PASS:SCOP CHAN

 control:auxiliary:passfail:scope sweep

Query Syntax CONTrol:AUXiliary:PASSfail:SCOPe?
Return Type Character

Overlapped? No
Default CYCLe

CONTrol:AUXiliary:SWEepend <char>
(Read-Write) Specifies the event that will cause the AUX IO Sweep End line (pin 11) to go to a
low (false) state. The line will return to a high state after the appropriate calculations are
complete. This line is connected internally to the Sweep End line of the Material Handler IO.
Parameters
<char> Choose from:

 Sweep - the line goes low when each sweep is complete.
Channel - The line goes low when all of the sweeps for each channel is
complete.
Global - The line goes low when all the sweeps for all channels are
complete.
The default state of the passFail line (before a measurement occurs and
after a failure occurs) is set by CONTrol:AUXiliary:PASSfail:MODe.

Examples CONT:AUX:SWE SWE

 control:auxiliary:sweepend channel

Query Syntax CONTrol:AUXiliary:SWEepend?
Return Type Character

Overlapped? No
Default SWEep

CONTrol:EXTernal:TESTset:DATa <addr>,<data>
(Read-Write) Reads and writes 13 bits of data to the specified address using the AD0 through
AD12 lines of the external test set connector. The instrument generates the appropriate timing
signals (strobes the address, then the data) to control an external test set.
Parameters
<addr> Decimal equivalent of the 13 bit binary address.
<data> Decimal equivalent of the 13 bit binary data

Examples CONT:EXT:TEST:DATA 12,3

 CONTrol:external:testset:data 12,3

348

Query Syntax CONTrol:EXTernal:TESTset:DATA? <addr>
’Reads the decimal equivalent of the binary data from the specified
address

Return Type Integer

Overlapped? No
Default Not Applicable

CONTrol:EXTernal:TESTset:INTerrupt?
(Read-Only) Reads the boolean state of the Interrupt In line (pin 13) on the external test set
connector.
Examples CONT:EXT:TEST:INT?

 control:external:testset:interrupt?

Return Type Boolean

False (0) - the line is being held at a TTL High.
True (1) - the line is being held at a TTL Low.

Overlapped? No
Default Not Applicable

CONTrol:EXTernal:TESTset:RAWData <data>
(Read-Write) Reads and writes 16 bits of data through the AD0 through AD12 and three timing
lines of the external test set connector. Does NOT generate appropriate timing signals.
Use of this command requires detailed knowledge of all 16 bits. Refer to the Data format table.

Note: During a WRITE, Bit 13 must always be low. Otherwise Bit 0-12 will tristate

Parameters
<data> Decimal equivalent of the binary data.

Format of data WRITTEN with RAWData:
Pin Bit Signal name
22 0 AD0*
23 1 AD1*
11 2 AD2*
10 3 AD3*
9 4 AD4*
21 5 AD5*
20 6 AD6*
19 7 AD7*
6 8 AD8*
5 9 AD9*
4 10 AD10*
17 11 AD11*
3 12 AD12*
25 13 RLW
24 14 LDS
8 15 LAS

* This Output will float if RLW (bit-13) is set high

349

Examples CONT:EXT:TEST:RAWD 8001

 CONTrol:external:testset:rawdata 1234

Query Syntax CONTrol:EXTernal:TESTset:RAWData?
Return Format Format of data READ with RAWData?

Pin Bit Signal name
22 0 AD0*
23 1 AD1*
11 2 AD2*
10 3 AD3*
9 4 AD4*
21 5 AD5*
20 6 AD6*
19 7 AD7*
6 8 AD8*
5 9 AD9*
4 10 AD10*
17 11 AD11*
3 12 AD12*
2 13 Sweep Holdoff In
13 14 Interrupt In (inverted internally)
na 15 Always Zero, grounded internally
*These lines are dependent on the state of RLW (pin25).
 Writing a 0(low) to RLW will set lines AD0-AD12 to write mode.
 Writing a 1(high) to RLW will set lines AD0-AD12 to read mode.

Return Type Integer

Overlapped? No
Default Not Applicable

CONTrol:EXTernal:TESTset:SWEepholdoff?
(Read-Only) Reads the Sweep Holdoff Iine (pin 2) on the external test set connector.
Examples CONT:EXT:TEST:SWE?

 control:external:testset:sweepholdoff?

Return Type Boolean

TRUE (1) - the pin is set to a TTL High
FALSE (0) - the pin is set to TTL Low

Overlapped? No
Default Not Applicable

CONTrol:HANDler:C:MODE <char>
(Read-Write) Sets and reads the direction of data flow for Port C.
Parameters
<char> Direction of flow. Choose from:

350

INPut - Port C is used to input data
OUTPut - Port C is used to output data

Examples CONT:HAND:C:MODE INP

 control:handler:c:mode output

Query Syntax CONTrol:HANDler:C:MODE?
Return Type Character

Overlapped? No
Default INPut

CONTrol:HANDler:D:MODE <char>
(Read-Write) Sets and reads the direction of data flow for Port D
Parameters
<char> Direction of flow. Choose from:

INPut - Port D is used to input data
OUTPut - Port D is used to output data

Examples CONT:HAND:D:MODE INP

 control:handler:d:mode output

Query Syntax CONTrol:HANDler:D:MODE?
Return Type Character

Overlapped? No
Default Input

CONTrol:HANDler:<port>[:DATa] <num>
(Read-Write) Writes and reads data on the specified port.
Parameters
<port> Port identifier to set bits for. Choose from:

A,B,C,D,E,F,G,H
<num> The number of the data bits to set. Refer to the following table for the

maximum number for each port. The minimum number for each port is 0.
Port Max allowable

<num>
MSB...LSB
 23...0

A 255 A7...A0 Write-
only

B 255 B7...B0 Write-
only

C 15 C3...C0 Read-
Write

D 15 D3...D0 Read-
Write

E 255 D3...D0 + C3...C0 Read-
Write

F 65535 B7...B0 + A7...A0 Write-
only

G 1048575 C3...C0 + B7...B0 + A7...A0 Write-
only

H 16777215 D3...D0 + C3...C0 + B7...B0 + A7...A0 Write-
only

351

Note: When writing to port G, port C must be set to output mode
 When writing to port H, both port C and port D must be set to output
mode. Use CONT:HAND:C:MODE OUTP and CONT:HAND:D:MODE
OUTP

Examples CONT:HAND:A 254

 control:handler:c:data 12

Query Syntax CONTrol:HANDler:<port>:DATA?
Return Type Integer

Overlapped? No
Default Not Applicable

CONTrol:HANDler:INPut?
(Read-Only) Reads a hardware latch that captures low to high transition on Input1 of the
Material Handler IO. Reading the latch causes it to reset and is ready for the next transition.
The hardware latch is only capable of capturing one transition per query. Additional transitions
are ignored until after the next query.
Examples CONT:HAND:INP?

 control:handler:input?

Return Type Integer - Returns a value of zero or one.

One - A low to high transition occurred at Input1 since the last time it was
queried.
Zero - No low to high transition occurred. After the query the latch is reset
and is ready for the next input. If no low to high transitions occur
additional queries will return zero.
Momentarily grounding or driving Input1 low, then high, will cause a
transition to be detected and latched.

Overlapped? No
Default 0

CONTrol:HANDler:LOGic <char>
(Read-Write) Sets the logic of the Data ports A-H on the Handler connector. Some of these
lines are connected internally to the AuxIO.
Parameters
<char> Choose from:

 POSitive- Causes the Port lines to have positive logic (high = 1, low =
0).
NEGative- Causes the Port lines to have negative logic (high = 0, low =
1).
For ports that are in output (write) mode, a change in logic causes the
output lines to change state immediately. For example, Low levels
change immediately to High levels.
For ports that are in input (read) mode (C,D,E only), a change in logic will
be reflected when data is read from that port. For example, if a line read
0, the next read after a logic change will read 1.

Examples CONT:HAND:LOG POS

 control:handler:logic negative

Query Syntax CONTrol:HANDler:LOGic?

352

Return Type Character

Overlapped? No
Default POSitive

CONTrol:HANDler:OUTPut<num>[:DATa] <num2>
(Read-Write) Sets or reads whether the specified output line is High or Low.
Parameters
<num> Output port. Choose from:

1 - output 1(default)
2 - output 2

<num2> 0 - Low
1 - High

Examples CONT:HAND:OUTPut1 1

 control:handler:output2:data 0

Query Syntax CONTrol:HANDler:OUTPut<num>:DATA?
Return Type Integer (0 or 1)

Overlapped? No
Default 0 - Low

CONTrol:HANDler:OUTPut<num>:USER[:DATa] <num2>
(Read-Write) Sets or reads whether the specified USER output line is High or Low.
Parameters
<num> USER Output port. Choose from:

1 - User output 1(default)
2 - User output port.

<num2> 0 - Low
1 - High

Examples CONT:HAND:OUTPut1:USER 1

 control:handler:output2:user:data 0

Query Syntax CONTrol:HANDler:OUTPut<num>:USER:DATA?
Return Type Integer (0 or 1)

Overlapped? No
Default 0 - Low

CONTrol:HANDler:PASSfail:LOGic <char>
(Read-Write) Sets the logic of the PassFail line of the Material Handler IO (pin 33). This line is
connected internally to the PassFail line (pin 12) on the AUX IO connector.
Parameters
<char> Choose from:

 POSitive- Causes the PassFail line to have positive logic (high = pass,
low = fail).
NEGative- Causes the PassFail line to have negative logic (high = fail,
low = pass).

Examples CONT:HAND:PASS:LOG POS

 control:handler:passfail:logic negative

353

Query Syntax CONTrol:HANDler:PASSfail:LOGic?
Return Type Character

Overlapped? No
Default POSitive

CONTrol:HANDler:PASSfail:MODe <char>
(Read-Write) Sets the mode for the PassFail line (pin 33) of the Material Handler IO connector.
This line is hardwired to the PassFail line (pin 12) on the AUX IO connector.
Parameters
<char> Choose from:

 PASS- the line stays in PASS state. When a device fails, then the line
goes to fail after the Sweep End line is asserted.
FAIL- the line stays in FAIL state. When a device passes, then the line
goes to PASS state after the Sweep End line is asserted.
NOWait- the line stays in PASS state. When a device fails, then the line
goes to fail IMMEDIATELY.

Examples CONT:HAND:PASS:MODE NOW

 control:handler:passfail:mode fail

Query Syntax CONTrol:HANDler:PASSfail:MODE?
Return Type Character

Overlapped? No
Default NOWait

CONTrol:HANDler:PASSfail:SCOPe <char>
(Read-Write) Sets and reads scope mode of the PassFail line on the HANDLER IO. This line is
connected to the PassFail line of the Handler IO connector. Therefore, it will have the same
scope.
Parameters
<char> Choose from:

CHANnel- The PassFail line returns to its default state before sweeps on
the next channel start. (A channel measurement may require several
sweeps.)
GLOBal - The PassFail line returns to its default state before the sweeps
for the next triggerable channel start.
The default state of the passFail line (before a measurement occurs) and
after a failure occurs is set by CONTrol:HANDler:PASSfail:MODe

Examples CONT:HAND:PASS:SCOP CHAN

 control:handler:passfail:scope sweep

Query Syntax CONTrol:HANDler:PASSfail:SCOPe?
Return Type Character

Overlapped? No
Default GLOBal

CONTrol:HANDler:SWEepend <char>
(Read-Write) Specifies the event that will cause the Handler Sweep End line to go to a low

354

(false) state. The line will return to a high state after the appropriate calculations are complete.
This line is connected internally to the Sweep End line of the AUX IO connector.
Parameters
<char> Choose from:

 SWEep - the line goes low when each sweep is complete
CHANnel - the line goes low when all the sweeps for each channel is
complete.
GLOBal - the line goes low when all sweeps for all channels are
complete.
The default state of the passFail line (before a measurement occurs) and
after a failure occurs is set by CONTrol:HANDler:PASSfail:MODe

Examples CONT:HAND:SWE SWE

 control:handler:sweepend channel

Query Syntax CONTrol:HANDler:SWEepend?
Return Type Character

Overlapped? No
Default SWEep

CONTrol:SIGNal <conn>,<char>
(Read-Write) Enables external edge triggering in the PNA. To receive trigger signals from an
external source, the PNA must be in External trigger mode. Edge triggering is only available
on PNA models E8361A, E8362B, E8363B, and E8364B. For more information, see Edge
Triggering.
Parameters
<conn> Rear Panel connector to send or receive trigger signals. Choose from:

BNC1 Trigger IN from external source (Trigger IN BNC connector)
AUXT Trigger IN from external source (AUX IO connector Pin 19)

Note: Only one of the input connectors is active at a time. When a
command is sent to one, the PNA automatically makes the other
INACTIVE.

BNC2 Trigger OUT (Trigger OUT BNC connector). Only useful in point
sweep mode.

<char> When <conn> is set to either BNC1 or AUXT choose from:
TIENEGATIVE - (Trigger In Edge Negative) - Triggers the PNA when
receiving a negative going signal
TIEPOSITIVE - (Trigger In Edge Positive) - Triggers the PNA when
receiving a positive going signal
TILLOW - (Trigger In Level Low) - Triggers the PNA when receiving a low
level signal
TILHIGH - (Trigger In Level High) - Triggers the PNA when receiving a
High-level signal
INACTIVE - Disables the specified connector.

Note: The channel to be triggered must be in point sweep mode

When <conn> is set to BNC2 choose from:
TOPPAFTER - (Trigger Out Pulse Positive After) - Sends a POSITIVE
going TTL pulse at the END of each point during the sweep.
TOPBEFORE - (Trigger Out Pulse Positive Before) - Sends a POSITIVE
going TTL pulse at the START of each point during the sweep.
TOPNAFTER - (Trigger Out Pulse Negative After) - Sends a NEGATIVE

355

going TTL pulse at the END of each point during the sweep.
TOPNBEFORE - (Trigger Out Pulse Negative Before) - Sends a
NEGATIVE going TTL pulse at the START of each point during the
sweep.
INACTIVE - Disables the specified connector.

Examples CONT:SIGN BNC1,TIENEGATIVE

 control:signal bnc2,topbefore

Query Syntax CONTrol:SIGNal <conn>?

In addition to the arguments listed above, the following is also a possible
returned value:
NAVAILABLE - This feature is not available on this PNA

Return Type Character

Overlapped? No
Default BNC1 = INACTIVE

 BNC2 = INACTIVE
 AUXT = TILHIGH

Display Commands

Controls the settings of the front panel screen.

• Click on a blue keyword to view the command details.
• See a List of all commands in this block.
• See an example using some of these commands
• Learn about Screen Setup

DISPlay:ANNotation:FREQuency[:STATe] <ON | OFF>
(Read-Write) Turns frequency information on the display title bar ON or OFF for all windows.
Parameters
<ON | OFF> ON (or 1) - turns frequency annotation ON.

356

 OFF (or 0) - turns frequency annotation OFF.

Examples DISP:ANN:FREQ ON

 display:annotation:frequency:state off

Query Syntax DISPlay:ANNotation:FREQuency[:STATe]?
Return Type Boolean (1 = ON, 0 = OFF)

Overlapped? No
Default ON (1)

DISPlay:ANNotation:MESSage:STATe <ON | OFF>
(Read-Write) Enables and disables error pop-up messages on the display.
Parameters
<ON | OFF> ON (or 1) - enables error pop-up messages

 OFF (or 0) - disables error pop-up messages

Examples DISP:ANN:MESS:STAT ON

 display:annotation:message:state off

Query Syntax DISPlay:ANNotation:MESSage:STATe?
Return Type Boolean (1 = ON, 0 = OFF)

Overlapped? No
Default ON (1)

DISPlay:ANNotation:STATus <ON|OFF>
(Read-Write) Turns the status bar at the bottom of the screen ON or OFF. The status bar
displays information for the active window.
Parameters
<ON | OFF> ON (or 1) - turns status bar ON.

 OFF (or 0) - turns status bar OFF.

Examples DISP:ANN:STAT ON

 display:annotation:status off

Query Syntax DISPlay:ANNotation:STATus?
Return Type Boolean (1 = ON, 0 = OFF)

Overlapped? No
Default Last state that was set

DISPlay:CATalog?
(Read-only) Returns the existing Window numbers.

Return Type String of Character values, separated by commas
Example Two windows with numbers 1 and 2 returns:

 "1,2"

Overlapped? No
Default Not applicable

357

DISPlay:ENABLE <ON | OFF>
(Read-Write) Specifies whether to disable or enable all analyzer display information in all
windows in the analyzer application. Marker data is not updated. More CPU time is spent
making measurements instead of updating the display.
Parameters
<ON | OFF> ON (or 1) - turns the display ON.

 OFF (or 0) - turns the display OFF.

Examples DISP:ENAB ON

 display:enable off

Query Syntax DISPlay:ENABle?
Return Type Boolean (1 = ON, 0 = OFF)

Overlapped? No
Default ON

DISPlay[:TILE]
(Write-only) Tiles the windows on the screen.
Examples DISP

 display:tile

Overlapped? No
Default Not Applicable

DISPlay:WINDow<wnum>:ANNotation:MARKer:SINGle[:STATe] <bool>
(Read-Write) Either shows marker readout of only the active trace or all of the traces
simultaneously. See other SCPI Marker commands
Parameters
<wnum> Any existing window number (1 to 4); if unspecified, value is set to 1.
<bool> ON (or 1) - show a single marker per trace

 OFF (or 0) - show up to 4 markers per active trace

Examples DISP:WIND:ANN:MARK:SING ON

 display:window:annotation:marker:single off

Query Syntax DISPlay:WINDow:ANNotation:MARKer:SINGle?
Return Type Boolean (1 = ON, 0 = OFF)

Overlapped? No
Default OFF

DISPlay:WINDow<wnum>:ANNotation:MARKer:SIZE <char>
(Read-Write) Specifies the size of the marker readout text. See other SCPI Marker commands
Parameters
<wnum> Any existing window number (1 to 4); if unspecified, value is set to 1.
<char> Readout text size. Choose from:NORMal | LARGe

Examples DISP:WIND:ANN:MARK:SIZE LARG

 display:window:annotation:marker:size normal

Query Syntax DISPlay:WINDow:ANNotation:MARKer:SIZE?
Return Type Character

358

Overlapped? No
Default NORMal

DISPlay:WINDow<wnum>:ANNotation:MARKer:STATe <ON|OFF>
(Read-Write) Specifies whether to show or hide the Marker data (when markers are ON) on the
selected window. See other SCPI Marker commands
Parameters
<wnum> Any existing window number (1 to 4); if unspecified, value is set to 1.
<ON | OFF> ON (or 1) - turns marker data ON.

 OFF (or 0) - turns marker data OFF.

Examples DISP:WIND:ANN:MARK:STAT ON

 display:window:annotation:marker:state off

Query Syntax DISPlay:WINDow:ANNotation:MARKer:STATe?
Return Type Boolean (1 = ON, 0 = OFF)

Overlapped? No
Default ON

DISPlay:WINDow<wnum>:ANNotation:TRACe:STATe <ON|OFF>
(Read-Write) Specifies whether to show or hide the Trace Status buttons on the left of the
display.
Parameters
<wnum> Any existing window number (1 to 4); if unspecified, value is set to 1.
<ON | OFF> ON (or 1) - turns the buttons ON.

 OFF (or 0) - turns the buttons OFF.

Examples DISP:WIND:ANN:TRAC:STAT ON

 display:window:annotation:trace:state off

Query Syntax DISPlay:WINDow:ANNotation:TRACe:STATe?
Return Type Boolean (1 = ON, 0 = OFF)

Overlapped? No
Default ON

DISPlay:WINDow<wnum>:CATalog?
(Read-only) Returns the trace numbers for the specified window.
Parameters
<wnum> Any existing window number (1 to 4); if unspecified, value is set to 1.

Return Type String of Character values, separated by commas
Example Window 1 with four traces:

 DISPlay:WINDow1:CATalog?
 Returns:
 "1,2,3,4"

Overlapped? No
Default Not applicable

359

DISPlay:WINDow<wnum>:ENABle <ON | OFF>
(Read-Write) Specifies whether to disable or enable all analyzer display information in the
specified window. Marker data is not updated. More CPU time is spent making
measurements instead of updating the display.
Parameters
<wnum> Any existing window number (1 to 4); if unspecified, value is set to 1.
<ON | OFF> ON (or 1) - turns the display ON.

 OFF (or 0) - turns the display OFF.

Examples DISP:WIND:ENABle ON

 display:window1:enable off

Query Syntax DISPlay:WINDow<wnum>:ENABle?
Return Type Boolean (1 = ON, 0 = OFF)

Overlapped? No
Default ON

DISPlay:WINDow<wnum>[:STATe] <ON | OFF>
Write to create or delete a window on the screen or Read whether a window is present.
Parameters
<wnum> Window number to create; choose any integer between:

 1 and 4
<ON | OFF> ON (or 1) - The window <wnum> is created.

 OFF (or 0) - The window <wnum> is deleted.

Examples DISP:WIND ON

 display:window2:state off

Query Syntax DISPlay:WINDow<wnum>[:STATe]?
Return Type Boolean (1 = ON, 0 = OFF)

Overlapped? No
Default Window number "1" ON

DISPlay:WINDow<wnum>:TABLe <char>
Write to show the specified table at the bottom of the analyzer screen or Read to determine
what table is visible.
Parameters
<wnum> Any existing window number (1 to 4); if unspecified, value is set to 1
<char> Table to show. Choose from:

 OFF | MARKer | LIMit | SEGMent

Examples DISP:WIND:TABLe SEGM

 display:window:table off

Query Syntax DISPlay:WINDow:TABLe?

Overlapped? No
Default OFF

DISPlay:WINDow<wnum>:TITLe:DATA <string>
(Read-Write) Sets data in the window title area. The title is turned ON and OFF with

360

DISP:WIND:TITL:STAT OFF.
Parameters
<wnum> Any existing window number (1 to 4); if unspecified, value is set to 1.
<string> Title to be displayed. Any characters, enclosed with quotes. If the title

string exceeds 50 characters, an error will be generated and the title not
accepted. Newer entries replace (not append) older entries.

Examples DISP:WIND:TITL:DATA ’hello’

 display:window2:title:data ’hello’

Query Syntax DISPlay:WINDow<wnum>:TITLe:DATA?
Return Type String

Overlapped? No
Default NA

DISPlay:WINDow<wnum>:TITLe[:STATe] <ON | OFF>
(Read-Write) Turns display of the title string ON or OFF. When OFF, the string remains, ready
to be redisplayed when turned back ON.
Parameters
<wnum> Any existing window number (1 to 4); if unspecified, value is set to 1
<ON | OFF> ON (or 1) - turns the title string ON.

 OFF (or 0) - turns the title string OFF.

Examples DISP:WIND:TITL ON

 Display:window1:title:state off

Query Syntax DISPlay:WINDow<wnum>:TITLe[:STATe]?
Return Type Boolean (1 = ON, 0 = OFF)

Overlapped? No
Default ON

DISPlay:WINDow<wnum>:TRACe<tnum>:DELete
(Write-only) Deletes the specified trace from the specified window. The measurement
parameter associated with the trace is not deleted.
Parameters
<wnum> Any existing window number (1 to 4); if unspecified, value is set to 1.
<tnum> The number of the trace to be deleted; if unspecified, value is set to 1

Examples DISP:WIND:TRAC:DEL

 display:window2:trace2:delete

Query Syntax Not applicable

Overlapped? No
Default NA

DISPlay:WINDow<wnum>:TRACe<tnum>:FEED <name>
(Write-only) Creates a new trace <tnum> and associates (feeds) a measurement <name> to
the specified window<wnum>. This command should be executed immediately after creating a
new measurement with CALC:PAR:DEF<name>,<parameter>.
To feed the same measurement to multiple traces, create another measurement with the same
<name>,<parameter> using the CALC:PAR:DEF command. The analyzer will collect the data

361

only once.
Parameters
<wnum> Any existing window number (1 to 4); if unspecified, value is set to 1.
<tnum> Trace number to be created. Choose any Integer between:

 1 and 4
<name> Name of the measurement that was defined with

CALC:PAR:DEF<name>,<parameter>

Examples DISP:WIND:TRAC:FEED ’test’

 display:window2:trace2:feed ’test’

Query Syntax Not applicable

Overlapped? No
Default "CH1_S11"

DISPlay:WINDow<wnum>:TRACe<tnum>MEMory[:STATe] <ON | OFF>
(Read-Write) Turns the memory trace ON or OFF.
Parameters
<wnum> Any existing window number (1 to 4); if unspecified, value is set to 1.
<tnum> Any existing trace number; if unspecified, value is set to 1
<ON | OFF> ON (or 1) - turns the memory trace ON.

 OFF (or 0) - turns the memory trace OFF.

Examples DISP:WIND:TRAC:MEM ON

 display:window2:trace2:memory:state off

Query Syntax DISPlay:WIND<wnum>:TRACe<tnum>:MEMory[:STATe]?
Return Type Boolean (1 = ON, 0 = OFF)

Overlapped? No
Default OFF

DISPlay:WINDow<wnum>:TRACe<tnum>:SELect
(Write-only) Activates the specified trace in the specified window for front panel use.
Parameters
<wnum> Any existing window number (1 to 4); if unspecified, value is set to 1.
<tnum> Any existing trace number; if unspecified, value is set to 1

Examples DISP:WIND:TRAC:SEL

 display:window2:trace2:select

Query Syntax Not applicable

Overlapped? No
Default NA

DISPlay:WINDow<wnum>:TRACe<tnum>[:STATe] <ON | OFF>
(Read-Write) Turns the display of the specified trace in the specified window ON or OFF. When
OFF, the measurement behind the trace is still active.
Parameters
<wnum> Any existing window number (1 to 4); if unspecified, value is set to 1.
<tnum> Any existing trace number; if unspecified, value is set to 1

362

<ON | OFF> ON (or 1) - turns the trace ON.
 OFF (or 0) - turns the trace OFF.

Examples DISP:WIND:TRAC ON

 display:window2:trace2:state off

Query Syntax DISPlay:WIND<wnum>:TRACe<tnum>[:STATe]?
Return Type Boolean (1 = ON, 0 = OFF)

Overlapped? No
Default ON

DISPlay:WINDow<wnum>:TRACe<tnum>:Y[:SCALe]:AUTO
(Write-only) Performs an Autoscale on the specified trace in the specified window, providing
the best fit display. Autoscale is performed only when the command is sent; it does NOT keep
the trace autoscaled indefinitely.
Parameters
<wnum> Any existing window number (1 to 4); if unspecified, value is set to 1.
<tnum> Any existing trace number; if unspecified, value is set to 1

Examples DISP:WIND:TRAC:Y:AUTO

 display:window2:trace2:y:scale:auto

Query Syntax Not applicable

Overlapped? No
Default Not applicable

DISPlay:WINDow<wnum>:TRACe<tnum>:Y[:SCALe]:PDIVision <num>
(Read-Write) Sets the Y axis Per Division value of the specified trace in the specified window.
Parameters
<wnum> Any existing window number (1 to 4); if unspecified, value is set to 1.
<tnum> Any existing trace number; if unspecified, value is set to 1
<num> Units / division value. The range of acceptable values is dependent on

format and domain.
Note: This command will accept MIN or MAX instead of a numeric
parameter. See SCPI Syntax for more information.

Examples DISP:WIND:TRAC:Y:PDIV 1

 display:window2:trace2:y:scale:pdivision maximum

Query Syntax DISPlay:WINDow<wnum>:TRACe<tnum>:Y[:SCALe]:PDIVision?
Return Type Character

Overlapped? No
Default 10

DISPlay:WINDow<wnum>:TRACe<tnum>:Y[:SCALe]:RLEVel <num>
(Read-Write) Sets the Y axis Reference Level of the specified trace in the specified window.
Parameters
<wnum> Any existing window number (1 to 4); if unspecified, value is set to 1.
<tnum> Any existing trace number; if unspecified, value is set to 1
<num> Reference level value. The range of acceptable values is dependent on

format and domain.

363

Note: This command will accept MIN or MAX instead of a numeric
parameter. See SCPI Syntax for more information.

Examples DISP:WIND:TRAC:Y:RLEV 0

 display:window2:trace2:y:scale:rlevel minimum

Query Syntax DISPlay:WINDow<wnum>:TRACe<tnum>:Y[:SCALe]:RLEVel?
Return Type Character

Overlapped? No
Default NA

DISPlay:WINDow<wnum>:TRACe<tnum>:Y[:SCALe]:RPOSition <num>
(Read-Write) Sets the Reference Position of the specified trace in the specified window
Parameters
<wnum> Any existing window number (1 to 4); if unspecified, value is set to 1.
<tnum> Any existing trace number; if unspecified, value is set to 1
<num> Reference position on the screen measured in horizontal graticules from

the bottom. The range of acceptable values is dependent on format and
domain.
Note: This command will accept MIN or MAX instead of a numeric
parameter. See SCPI Syntax for more information.

Examples DISP:WIND:TRAC:Y:RPOS 0

 display:window2:trace2:y:rposition maximum

Query Syntax DISPlay:WINDow<wnum>:TRACe<tnum>:Y[:SCALe]:RPOSition?
Return Type Character

Overlapped? No
Default 5

Format Commands

Specifies the way that data will be transferred when moving large amounts of data. These
commands will affect data that is transferred with the CALC:DATA and CALC:RDATA commands.

• Click on a blue keyword to view the command details.

• See a List of all commands in this block.

364

FORMat:BORDer <char>
(Read-Write) Set the byte order used for GPIB data transfer. Some computers read data from
the analyzer in the reverse order. This command is only implemented if FORMAT:DATA is set
to :REAL. If FORMAT:DATA is set to :ASCII, the swapped command is ignored.
Parameters
<char> Choose from:

 NORMal - Use when your controller is anything other than an IBM
compatible computers
 SWAPped - for IBM compatible computers

Examples FORM:BORD SWAP

 format:border normal

Query Syntax FORMat:BORDer?

Overlapped? No
Default Normal

FORMat[:DATA] <char>
(Read-Write) Sets the data format for data transfers. To transfer measurement data, use the
CALC:DATA command.
To transfer Source Power correction data, use
SOURce:POWer:CORRection:COLLect:TABLe:DATA
 SOURce:POWer:CORRection:COLLect:TABLe:FREQuency
 SOURce:POWer:CORRection:DATA
Parameters
<char> Choose from:

 REAL,32 - (default value for REAL) Best for transferring large amounts
of measurement data.
 REAL,64 - Slower but has more significant digits than REAL,32. Use
REAL,64 if you have a computer that doesn’t support REAL,32.
 ASCii,0 - The easiest to implement, but very slow. Use if small amounts
of data to transfer.
For more information, see Transferring Measurement Data

Examples FORM REAL,64

 format:data ascii

Query Syntax FORMat:DATA?
Return Type Character,Character

Overlapped? No
Default REAL,32

Hardcopy Command

Learn about Printing

365

HCOPy[:IMMediate]
(Write-only) Prints the screen to the default printer.
Examples HCOP

 hcopy:immediate

Query Syntax Not applicable

Overlapped? No
Default Not Applicable

Initiate Commands

Controls triggering signals

• Click on a blue keyword to view the command details.
• See a List of all commands in this block.
• Learn about Triggering

INITiate:CONTinuous <boolean>
(Read-Write) Specifies whether the analyzer sends Continuous sweep triggers to triggerable
channels or enables Manual triggering.
Parameters
<boolean> ON (or 1) - Continuous sweep mode.

 OFF (or 0) - Manual sweep mode.

Examples INIT:CONT ON

 initiate:continuous off

Query Syntax INITiate:CONTinuous?
Return Type Boolean (1 = ON, 0 = OFF)

Overlapped? No
Default ON

INITiate<cnum>[:IMMediate]
(Write-only) Stops the current sweeps and immediately sends a trigger to the specified channel. (
Same as Sweep \ Trigger \ Trigger!)

• If the specified channel is in HOLD, it will sweep one time and return to HOLD when
complete.

• If Trigger:Scope = Global, all channels will receive a trigger.
• If Trigger:Scope = Channel (only the active channel receives a trigger) and the specified

channel is not the active channel, the specified channel will NOT receive a trigger signal.
• If the specified channel is NOT in Manual trigger (INIT:CONT OFF), the analyzer will return

an error.
If channel <cnum> does not exist, the analyzer will return an error.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1

366

Examples INIT

 initiate2:immediate

Query Syntax Not applicable

Overlapped? Yes
Default Not applicable

Memory Commands

The memory commands control saving and loading instrument states to the hard drive.

• Click on a blue keyword to view the command details.
• See a List of all commands in this block.
• Learn about Save / Recall

All MMEM files have an extension according to their type.
1. Binary filetype:

• .sta - Instrument State
• .cal - Calibration file
• .cst - Both Instrument State and Calibration file

2. ASCII filetype (MDIF or Touchstone formats):
• .s1p
• .s2p
• .s3p

The default folder is "C:\Program Files\Agilent\Network Analyzer\Documents"

You can change the active directory using MMEMory:CDIRectory, or you can use an absolute
path name to specify all MMEM files and folders.

MMEMory:CATalog[:<char>]? [<folder>]
(Read-only) Returns a comma-separated string of file names that are in the specified folder. If
there are no files of the specified type, "NO CATALOG" is returned.
Parameters
<char> The type of files to list. Choose from:

 STATe - Instrument states (.sta)
 CORRection - Calibration Data (.cal)
 CSTate - Instrument state and Calibration data (.cst)
If unspecified then ALL file types (even unknown types) are listed.

<folder> String - Any existing folder name. If unspecified ’C:\Program
Files\Agilent\Network Analyzer\Documents’ is used.

Examples MMEM:CAT? ’lists all files from the current folder

 mmemory:catalog:correction? ’C:\Program Files\Agilent\Network
Analyzer\Documents’ ’lists .cal files from the specified folder

367

Overlapped? No
Default Not applicable

MMEMory:CDIRectory <folder>
(Read-Write) Changes the folder name.
Parameters
<folder> Any drive and folder name that already exists.

 If the same level as "C:\Program Files\Agilent\Network
Analyzer\Documents", then no punctuation is required
MMEM:CDIR Service

If the new folder is at a different level than "C:\Program
Files\Agilent\Network Analyzer\Documents", use a slash (\) before the
folder name and enclose in quotes.
mmemory:cdirectory ’\automation’ ’changes default
directory up one level.

You can use an absolute path to specify the new folder.
mmemory:cdirectory ’c:\automation\service’

Query Syntax MMEMory:CDIRectory? ’Returns the current folder name
Return Type String

Overlapped? No
Default ’C:\Program Files\Agilent\Network Analyzer\Documents’

MMEMory:COPY <file1>,<file2>
(Write-only) Copies file1 to file2. Extensions must be specified.
Parameters
<file1> String - Name of the file to be copied.
<file2> String - Name of the file to be created from file1.

Examples MMEM:COPY ’MyFile.cst’,’YourFile.cst’

Query Syntax Not applicable

Overlapped? No
Default Not applicable

MMEMory:DELete <file>
(Write-only) Deletes file. Extensions must be specified.
Parameters
<file> String - Name of the file to be deleted.

Examples MMEM:DEL ’MyFile.cst’

Query Syntax Not applicable

Overlapped? No
Default Not applicable

MMEMory:LOAD[:<char>] <file>
(Write-only) Loads the specified file.

368

Parameters
<char> The type of file to load. Choose from:

 STATe - Instrument states (.sta)
 CORRection - Calibration Data (.cal)
 CSTate - Instrument state and Calibration data (.cst)
If <char> is unspecified, the extension must be included in the filename.
If an extension is specified in <file> that does not agree with <char> then
no action is taken.

<file> String - Name of the file to be loaded. The default folder is used if
unspecified in the filename.

Examples MMEM:LOAD ’MyFile.cst’

 mmemory:load:state ’MyInstState’

Query Syntax Not applicable

Overlapped? No
Default Not applicable

MMEMory:MDIRectory <folder>
(Write-only) Makes a folder.
Parameters
<folder> String - Name of the folder to make.

Examples MMEM:MDIR ’MyFolder’

 mmemory:mdirectory ’c:\NewFolder’

Query Syntax Not applicable

Overlapped? No
Default Not applicable

MMEMory:MOVE <file1>,<file2>
(Write-only) Renames <file1> to <file2>. File extensions must be specified.
Parameters
<file1> String - Name of the file to be renamed.
<file2> String - Name of the new file.

Examples MMEM:MOVE ’MyFile.cst’,’YourFile.cst’

Query Syntax Not applicable

Overlapped? No
Default Not applicable

MMEMory:RDIRectory <folder>
(Write-only) Removes the specified folder.
Parameters
<folder> String - Name of the folder to remove.

Examples MMEM:RDIR ’MyFolder’

Query Syntax Not applicable

369

Overlapped? No
Default Not applicable

MMEMory:STORe[:<char>] <file>
(Write-only) Stores the specified file (.sta, .cal, .cst, .s1p, .s2p, and .s3p.).
The ASCII file types (.s1p, .s2p, and .s3p.) may be valid only if the proper calibration is enabled
for the current active measurement.
Example:
MMEM:STOR "myfile.s2p" stores an s2p file successfully if 2-Port calibration is enabled.
For more information on filetypes (see: Save recall a file)
Parameters
<char> The type of file to store. Choose from:

 STATe - Instrument states (.sta)
 CORRection - Calibration Data (.cal)
 CSTate - Instrument state and Calibration data (.cst)
No <char> is specified for s1p, s2p and s3p
If unspecified, then the extension must be included in the filename.
If an extension is specified in <file> that does not agree with <char> then
no action is taken.

<file> String - Name of any valid file that is not already in existence.

Examples MMEM:STOR:STAT ’myState’

 mmemory:store ’c:\bin\myState.sta’

Query Syntax Not applicable

Overlapped? No
Default Not applicable

Output Command

Learn about Power

OUTPut[:STATe] <ON | OFF>
(Read-Write) Turns RF power from the source ON or OFF.
Parameters
<ON | OFF> ON (or 1) - turns RF power ON.

 OFF (or 0) - turns RF power OFF.
Examples OUTP ON

 output:state off

Query Syntax OUTPut[:STATe]?
Return Type Boolean (1 = ON, 0 = OFF)

Overlapped? No
Default ON

370

Sens:Average Commands

Sets sweep-to-sweep averaging parameters. Averaging is a noise reduction technique that
averages each data point over a user-specified number of sweeps. Averaging affects all of the
measurements in the channel.

• Click on a blue keyword to view the command details.
• See a List of all commands in this block.
• See an example using some of these commands.
• Learn about Averaging

SENSe<cnum>:AVERage:CLEar
(Write-only) Clears and restarts averaging of the measurement data. Must also set
SENS:AVER[:STATe] ON
Parameters
<cnum> Any existing channel number; if unspecified, value is set to 1.

Examples SENS:AVER:CLE

 sense2:average:clear

Query Syntax Not applicable

Overlapped? No
Default Not applicable

SENSe<cnum>:AVERage:COUNt <num>
(Read-Write) Sets the number of measurement sweeps to combine for an average. Must also
set SENS:AVER[:STATe] ON
Parameters
<cnum> Any existing channel number; if unspecified, value is set to 1.
<num> Number of measurement sweeps to average. Choose any number

between:
 1 and 1024

Examples SENS:AVER:COUN 999

 sense2:average:count 73

Query Syntax SENSe<cnum>:AVERage:COUNt?
Return Type Character

Overlapped? No
Default 1

371

SENSe<cnum>:AVERage[:STATe] <ON | OFF>
(Read-Write) Turns trace averaging ON or OFF.
Parameters
<cnum> Any existing channel number; if unspecified, value is set to 1.
<ON | OFF> ON (or 1) - turns averaging ON.

 OFF (or 0) - turns averaging OFF.

Examples SENS:AVER ON

 sense2:average:state off

Query Syntax SENSe<cnum>:AVERage[:STATe]?
Return Type Boolean (1 = ON, 0 = OFF)

Overlapped? No
Default Off

Sense:Bandwidth Command

Learn about IF Bandwidth

SENSe<cnum>:BANDwidth | BWIDth[:RESolution] <num>
(Read-Write) Sets the bandwidth of the digital IF filter to be used in the measurement. The
keywords BAND or BWID are interchangeable.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<num> IF Bandwidth in Hz. Choose from:

 1 | 2 | 3 | 5 | 7 | 10 | 15 | 20 | 30 | 50 | 70 | 100 | 150 | 200 | 300 | 500 |
700 | 1k | 1.5k | 2k | 3k | 5k | 7k | 10k | 15k | 20k | 30k | 35k | 40k |
If a number other than these is entered, the analyzer will round up to the
closest valid number (unless a number higher than the maximum in
entered.)

Examples SENS:BWID 1KHZ

 sense2:bandwidth:resolution 1000

Query Syntax SENSe<cnum>:BANDwidth | BWIDth[:RESolution]?
Return Type Character

Overlapped? No
Default 35k

372

Sense:Correction Commands

Performs and applies measurement calibration and other error correction features.

• Click on a blue keyword to view the command details.
• See a List of all commands in this block.
• See an example using some of these commands.
• Learn about Measurement Calibration

SENSe<cnum>:CORRection:CCHeck[:ACQuire] <char>[,char]
(Write-only) Reads the ’confidence data’ associated with the specified ECal module and puts it
into memory. The measurement is selected using SENS:CORR:CCH:PAR. This command is
compatible with *OPC.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1.
<char> ECAL Module that contains the confidence data. Choose from:

• ECALA
ECALB

[char] Optional argument. Specifies which characterization within the ECal
module that the confidence data will be read from. If this argument is not
used, the default is CHAR0.
<char>
CHAR0 Factory characterization (data that was stored in the ECal
module by Agilent)
CHAR1 User characterization (data that was written to the module by
the User Characterization feature on the PNA)

Examples SENS:CORR:CCHeck ECALA

sense2:correction:ccheck:acquire ecalb,char1

373

Query Syntax Not applicable

Overlapped? No
Default Not applicable

SENSe<cnum>:CORRection:CCHeck:DONE
(Write-only) Concludes the Confidence Check and sets the ECal module back into the idle
state.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1

Examples SENS:CORR:CCH:DONE

 sense2:correction:ccheck:done

Query Syntax Not applicable

Overlapped? No
Default Not applicable

SENSe<cnum>:CORRection:CCHeck:PARameter <Mname>
(Read-Write) Specifies an existing measurement to be used for the Confidence Check.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<Mname> Name of the measurement you are selecting for the confidence check.

The measurement must already exist.

Examples SENS:CORR:CCH:PAR ’TEST’

 ’selects the measurement "test" on channel 1 for the
confidence check

sense2:correction:ccheck:parameter ’test’
 ’selects the measurement "test" on channel 2 for the confidence check

Query Syntax SENSe<cnum>:CORRection:CCHeck:PARameter?

Returns the name of the selected measurement on channel <cnum>.

Overlapped? No
Default Not applicable

SENSe<cnum>:CORRection:COLLect[:ACQuire] <class>[,subclass]
(Write-only) Measures the specified standards from the selected calibration kit. The calibration kit is
selected using the Sense:Correction:Collect:CKIT command.

Note: Before using this command you must select two items:
 > Select a calibration method using SENS:CORR:COLL:METH
 > Select a measurement using CALC:PAR:SEL. You can select one measurement for each channel.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<class> Measures the standards associated with these class labels:

 Choose from:
STAN1 S11A and S22A
STAN2 S11B and S22B
STAN3 S11C and S22C

374

STAN4 S21T and S12T - usually the THRU standard
STAN5 Generic Isolation; not associated with calibration kit definition
ECALA ECAL module A
ECALB ECAL module B
SLSET Sets ’sliding load type’, and increments the "number of slides"

count. The total number of slides is critical to the correct
calculation of the sliding load algorithm. See a sliding load cal
example.

SLDONE Computes the sliding load using a circle fit algorithm.

[subclass] Optional argument. For mechanical calibration kits, choose from the following to
specifying the standard identified in the SENS:CORR:COLL:CKIT:ORDer list to
be acquired. If this argument is not used, the default is SST1.
SST1 First standard in the order list
SST2 Second standard in the order list
SST3 Third standard in the order list
SST4 Fourth standard in the order list
SST5 Fifth standard in the order list
SST6 Sixth standard in the order list
SST7 Seventh standard in the order list
 If ECALA or ECALB is specified for <class>, choose one of the following for
specifying which characterization within the ECal module will be used for the
acquire. If not specified, the default is CHAR0.
CHAR0 Factory characterization (data that was stored in the ECal module

by Agilent)
CHAR1 User characterization #1
CHAR2 User characterization #2
CHAR3 User characterization #3
CHAR4 User characterization #4
CHAR5 User characterization #5

Examples SENS:CORR:COLL STAN1

’If SENS:CORR:COLL:CKIT:ORDer2 5,3,7
 was specified, the following command measures standard 3
(the second in the order list)
 sense1:correction:collect:acquire stan3,sst2

SENS:CORR:COLL ECALA
 sense2:correction:collect:acquire ecalb,char1

Query Syntax Not applicable

Overlapped? No
Default Not applicable

SENSe<cnum>:CORRection:COLLect:APPLy
(Write-only) Applies error terms to the measurement that is selected using Calc:Par:Select.

Note: Before using this command you must select a measurement using CALC:PAR:SEL. You
can select one measurement for each channel.

Note: This command is only necessary if you need to modify error terms. If you do not need to
modify error terms, SENSe<cnum>:CORRection:COLLect:SAVE calculates and then

375

automatically applies error terms after you use SENS:CORR:COLL:ACQuire to measure cal
standards.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1

Example 1. CALCulate2:PARameter:SELect S21_2 ’select the

measurement to apply terms to

2. SENSe2:CORRection:COLLect:METHod SPARSOLT ’set
type of cal method.

3. CALCulate2:DATA? SCORR1 ’download the error term
of interest

4. ’Modify the error term here

5. CALCulate2:DATA SCORR1 ’upload the error term of
interest

SENSe2:CORRection:COLLect:APPLy ’applies the error terms to the
measurement

Query Syntax Not applicable

Overlapped? No
Default Not applicable

SENSe<cnum>:CORRection:COLLect:METHod <char>
(Read-Write) Sets the calibration method. (also known as ’Calibration Type’ on calibration
dialog box.)
Note: Before using this command you must select a measurement using CALC:PAR:SEL. You
can select one measurement for each channel.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<char> Choose from:

Method Description
NONE No Cal method
GUIDED Guided calibration
REFL1OPEN Response Open
 REFL1SHORT or REFL1 Response Short
REFL3 Full 1 port
TRAN1 Response Thru
TRAN2 Response Thru and Isolation
SPARSOLT Full SOLT 2 port

Examples SENS:CORR:COLL:METH REFL1

 sense2:correction:collect:method sparsolt

Query Syntax SENSe<cnum>:CORRection:COLLect:METHod?
Return Type Character

Overlapped? No
Default Not Applicable

376

SENSe<cnum>:CORRection:COLLect:SAVE
(Write-only) Calculates the error terms using the selected :METHod and applies the error terms
to the selected measurement (turns error correction ON.) Does NOT save the calibration error-
terms.
Note: Before using this command you must select a measurement using CALC:PAR:SEL. You
can select one measurement for each channel.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1

Examples SENS:CORR:COLL:SAVE

 sense2:correction:collect:save

Query Syntax Not applicable

Overlapped? No
Default Not applicable

SENSe<cnum>:CORRection:EXTension:PORT<pnum>[:TIME] <num>
(Read-Write) Sets the extension value at the specified port. Must also set SENS:CORR:EXT
ON.
Note: Before using this command you must select a measurement using CALC:PAR:SEL. You
can select one measurement for each channel.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<pnum> Number of the port that will receive the extension. If unspecified, value is

set to 1. Choose from:
1 for Port 1
2 for Port 2

<num> The port extension in seconds; may include suffix. Choose a number
between:
 -10 and 10

Examples SENS:CORR:EXT:PORT 2MS

 sense2:correction:extension:port2 .00025

Query Syntax SENSe<cnum>:CORRection:EXTension:PORT<pnum> [:TIME]?
Return Type Character

Overlapped? No
Default 0

SENSe<cnum>:CORRection:EXTension:RECeiver<Rnum>[:TIME] <num>
(Read-Write) Sets the extension value at the specified receiver. Must also set
SENS:CORR:EXT ON.
Note: Before using this command you must select a measurement using CALC:PAR:SEL. You
can select one measurement for each channel.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<Rnum> Number of the receiver that will receive the extension. If unspecified,

value is set to 1

377

 Choose from:
1 for Receiver A
2 for Receiver B

<num> The electrical length in seconds; may include suffix. Choose a number
between:
 -10 and 10

Examples SENS:CORR:EXT:REC 2MS

 sense2:correction:extension:receiver2:time .00025

Query Syntax SENSe<cnum>:CORRection:EXTension:RECeiver<Rnum> [:TIME]?
Return Type Character

Overlapped? No
Default 0

SENSe<cnum>:CORRection:EXTension[:STATe] <ON | OFF>
(Read-Write) Turns port extensions ON or OFF.
Note: Before using this command you must select a measurement using CALC:PAR:SEL. You
can select one measurement for each channel.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<ON | OFF> ON (or 1) - turns port entensions ON.

 OFF (or 0) - turns port extensions is OFF.

Examples SENS:CORR:EXT ON

 sense2:correction:extension:state off

Query Syntax SENSe<cnum>:CORRection:EXTension[:STATe]?
Return Type Boolean (1 = ON, 0 = OFF)

Overlapped? No
Default OFF

SENSe:CORRection:IMPedance:INPut:MAGNitude <num>
(Read-Write) Sets and returns the system impedance value for the analyzer.
Parameters
<num> System Impedance value in ohms. Choose any number between 0 and

1000 ohms.

Examples SENS:CORR:IMP:INP:MAGN 75

 sense:correction:impedance:input:magnitude 50.5

Query Syntax SENSe:CORRection:IMPedance:

 INPut:MAGNitude?
Return Type Character

Overlapped? No
Default 50

SENSe<cnum>:CORRection:INTerpolate[:STATe] <ON | OFF>
(Read-Write) Turns correction interpolation ON or OFF.
Note: Before using this command you must select a measurement using CALC:PAR:SEL. You
can select one measurement for each channel.

378

Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<ON | OFF> ON (or 1) - turns interpolation ON.

 OFF (or 0) - turns interpolation OFF.

Examples SENS:CORR:INT ON

 sense2:correction:interpolate:state off

Query Syntax SENSe<cnum>:CORRection:INTerpolate[:STATe]?
Return Type Boolean (1 = ON, 0 = OFF)

Overlapped? No
Default ON

SENSe<cnum>:CORRection:ISOLation[:STATe] <ON | OFF>
(Read-Write) Turns isolation cal ON or OFF during Full 2-port calibration. If this comand is not
sent, the default state is to disable Isolation.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<ON | OFF> ON (or 1) - turns isolation ON.

 OFF (or 0) - turns isolation OFF.

Examples SENS:CORR:ISOL ON

 sense2:correction:isolation:state off

Query Syntax SENSe<cnum>:CORRection:ISOLation[:STATe]?
Return Type Boolean (1 = ON, 0 = OFF)

Overlapped? No
Default OFF - (Isolation disabled)

SENSe:CORRection:PREFerences:ECAL:ORIentation[:STATe] <ON|OFF>
(Read-Write) Specifies whether or not the PNA should perform orientation of the ECal module
during calibration. Orientation is a technique by which the PNA automatically determines
which ports of the module are connected to which ports of the PNA. Orientation begins to fail
at very low power levels or if there is much attenuation in the path between the PNA and the
ECal module. If orientation is turned OFF, the
SENSe:CORRection:PREFerences:ECAL:PMAP command must be used to specify the port
connections before performing a cal.
Note: 3-port calibration with a 2-port ECal module does not yet fully support the mode of
orientation = OFF.

Examples SENS:CORR:PREF:ECAL:ORI OFF

sense:correction:preferences:ecal:orientation:state on

Query Syntax SENSe:CORRection:PREFerences:ECAL:ORIentation[:STATe]?
Return Type Boolean (1 = ON, 0 = OFF)

Overlapped? No
Default ON (1)

379

SENSe:CORRection:PREFerences:ECAL:PMAP <module>,<string>
(Read-Write) When ECal module orientation is turned OFF (SENS:CORR:PREF:ECAL:ORI
OFF), this command specifies the port mapping (which ports of the module are connected to
which ports of the PNA) prior to performing ECal calibrations.
Parameters
<module> Specifies which ECal module this port map is being applied to. Choose

from:
ECALA ECal module A
ECALB ECal module B

<string> This string parameter is expected to be formatted in the following
manner:
ax,by,cz
where a, b and c are ports on the module (i.e., A and B on 2-port ECal
modules), and x, y and z are PNA port numbers (i.e., 1 and 2 on a 2-port
PNA). Ports of the module which are not being used for calibration
should be omitted from the string. For example, if we had a 4-port ECal
module with port A connected to PNA port 2, port B to PNA port 3, port C
not connected, and port D to PNA port 1, the string would be:
A2,B3,D1
If either the receive port or source port (or load port for 2-port cal) of the
CALC:PAR:SELected measurement is not in this string and orientation is
OFF, an attempt to perform an ECal calibration will throw an error.

Examples SENS:CORR:PREF:ECAL:PMAP ECALA, ’A1,B2’

sense:correction:preferences:ecal:pmap ecalb, ’a2,b1,c3’

Query Syntax SENSe:CORRection:PREFerences:ECAL:PMAP? <module>
Return Type Character

Overlapped? No
Default Null string ()

SENSe<cnum>:CORRection:RVELocity:COAX <num>
(Read-Write) Sets the velocity factor to be used with Electrical Delay and Port Extensions.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<num> Velocity factor. Choose a number between:

 0 and 10
 (.66 polyethylene dielectric; .7 teflon dielectric)
Note: to specify the electrical delay for reflection measurements (in both
directions), double the velocity factor.

Examples SENS:CORR:RVEL:COAX .66

 sense2:correction:rvelocity:coax .70

Query Syntax SENSe<cnum>:CORRection:RVELocity:COAX?
Return Type Character

Overlapped? No
Default 1

SENSe:CORRection:SFORward[:STATe] <boolean>
(Read-Write) Sets the direction a calibration will be performed when only one set of standards

380

is used.
Use SENSe:CORRection:TSTandards[:STATe] OFF to specify that only one set of standards
will be used.
Parameters
<boolean> ON (1) - FORWARD direction of a 2-port calibration will be performed

OFF (0) - REVERSE direction of a 2-port calibration will be performed

Examples SENS:CORR:SFOR 1

 sense:correction:sforward:state 0

See an example using this command

Query Syntax Not applicable

Overlapped? No
Default ON

SENSe<cnum>:CORRection[:STATe] <ON | OFF>
(Read-Write) Specifies whether or not correction data is applied to the measurement.
Note: Before using this command you must select a measurement using CALC:PAR:SEL. You
can select one measurement for each channel.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<ON | OFF> ON (or 1) - correction is applied to the measurement.

 OFF (or 0) - correction is NOT applied to the measurement.

Examples SENS:CORR ON

 sense2:correction:state off

Query Syntax SENSe<cnum>:CORRection[:STATe]?
Return Type Boolean (1 = ON, 0 = OFF)

Overlapped? No
Default OFF

SENSe:CORRection:TSTandards[:STATe] <boolean>
(Read / Write) Specifies the acquisition of calibration data using TWO set of standards or ONE.
Parameters
<boolean> ON (1) - TWO sets of standards will be used for full 2-port calibration for

both Forward and Reverse parameters.
OFF (2) - ONE set of standards will be used for full 2-port calibration.
Set SENSe:CORRection:COLLect:SFORward[:STATe] to ON for the
forward acquisitions and OFF for the reverse acquisitions.

Examples SENS:CORR:TST 1

 sense:correction:tstandard:state 0

See an example using this command

Query Syntax SENSe:CORRection:TSTandards[:STATe]?

Overlapped? No
Default ON

381

Sense:Correction:Collect:CKit Commands

Use to change the definitions of calibration kit standards.

Most of these commands act on the currently selected standard from the currently selected
calibration kit.

• To select a Calibration kit, use SENS:CORR:COLL:CKIT:SEL.
• To select a Calibration standard, use SENS:CORR:COLL:CKIT:STAN:SEL
• Click on a blue keyword to view the command details.
• See a List of all commands in this block.
• Learn about Modifying Cal Kits

Note: You should provide data for every definition field - for every standard in your calibration kit.
If a field is not set, the default value may not be what you expect.

SENSe:CORRection:COLLect:CKIT:INFormation? <module>[,char]
(Read Only) Reads characterization information from an ECal module. This command returns
the same string as the GetECALModuleInfo method on the Calibrator COM object.
Parameters
<module> Specifies which ECal module to read from. Choose from:

ECALA ECal module A
ECALB ECal module B

[char] Optional argument.
Specifies which characterization within the ECal module to read
information from. If this argument is not used, the default is CHAR0.
CHAR1 through CHAR5 are for user characterizations that may have
been written to the module by the User Characterization feature on the
PNA. Choose from:
CHAR0 Factory characterization (data that was stored in the ECal
module by Agilent)
CHAR1 User characterization #1
CHAR2 User characterization #2
CHAR3 User characterization #3
CHAR4 User characterization #4
CHAR5 User characterization #5

Examples SENS:CORR:COLL:CKIT:INF? ECALA

 sense:correction:collect:ckit:information? ecalb,char1
Example return string:

382

ModelNumber: 85092-60007, SerialNumber: 01386, ConnectorType:
N5FN5F, PortAConnector: Type N (50) female, PortBConnector: Type N
(50) female, MinFreq: 30000, MaxFreq: 9100000000, NumberOfPoints:
250, Calibrated: July 4 2002

Return Type Character

Overlapped? No

Default
Not Applicable

SENSe:CORRection:COLLect:CKIT:NAME <name>
(Read-Write) Sets a name for the selected calibration kit.
Parameters
<name> Calibration Kit name. Any string name, can include numerics, period, and

spaces; any length (although the dialog box display is limited to about 30
characters).

Examples SENS:CORR:COLL:CKIT:NAME ’MYAPC35’

 sense:correction:collect:ckit:name ’mytypen’

Query Syntax SENSe:CORRection:COLLect:CKIT:NAME?
Return Type String

Overlapped? No

Default
Not Applicable

SENSe:CORRection:COLLect:CKIT:OLABel<class> <name>
(Read-Write) Sets the label for the calibration class designed by <class>. The label is used in
the prompts for connecting the calibration standards associated with that <class>.
Parameters
<class> Number of the calibration class. Choose a number between: 1 and 18.

 The <class> numbers are associated with the following calibration
Classes:
<class> Class Description
1 S11A Reflection standard
2 S11B Reflection standard
3 S11C Reflection standard
4 S21T Thru/Delay standard
5 S22A Reflection standard
6 S22B Reflection standard
7 S22C Reflection standard
8 S12T Thru/Delay standard
3-port analyzers only
9 S33A Reflection standard
10 S33B Reflection standard
11 S33C Reflection standard
12 S32T Thru/Delay standard
13 S23T Thru/Delay standard
14 S31T Thru/Delay standard

383

15 S13T Thru/Delay standard
 TRL Calibrations

16 TRL "T" Thru standard
17 TRL "R" Reflect standard
18 TRL "L" Thru standard

<name> Label for the calibration class. Must be enclosed in quotes. Any string between
1 and 12 characters long. Cannot begin with a numeric.

Examples SENS:CORR:COLL:CKIT:OLAB3 ’LOADS’

sense:correction:collect:ckit:olabel4 ’Thru’

Return Type String

Overlapped? No
Default Not Applicable

SENSe:CORRection:COLLect:CKIT:OLIST[class]?
(Read-only) Returns seven values of standards that are assigned to the specified class.
Parameters
<class> Number of the calibration class to be queried. The <class> numbers are

associated with the following calibration Classes:
<class> Class Description
1 S11A Reflection standard
2 S11B Reflection standard
3 S11C Reflection standard
4 S21T Thru/Delay standard
5 S22A Reflection standard
6 S22B Reflection standard
7 S22C Reflection standard
8 S12T Thru/Delay standard
3-port analyzers only
9 S33A Reflection standard
10 S33B Reflection standard
11 S33C Reflection standard
12 S32T Thru/Delay standard
13 S23T Thru/Delay standard
14 S31T Thru/Delay standard
15 S13T Thru/Delay standard

 TRL Calibrations
16 TRL "T" Thru standard
17 TRL "R" Reflect standard
18 TRL "L" Thru standard

<class> Number of the calibration class to be queried. The <class> numbers are
associated with the following calibration Classes:

Examples SENS:CORR:COLL:CKIT:OLIST8?

384

 Always returns 7 standard numbers. Unassigned standards return 0

Return Type Character; returns the <class> number of the selected standard.

Overlapped? No
Default Not Applicable

SENSe:CORRection:COLLect:CKIT:ORDer<class> <std> [,<std>] [,<std>]
[,<std>] [,<std>] [,<std>] [,<std>]
(Read-Write) Sets a standard number to a calibration class. Does NOT set or dictate the order
for measuring the standards. For more information, see Assigning Standards to a Calibration
Class
Parameters
<class> Number of the calibration class that is assigned to <standard>. Choose a

number between:
 1 and 18
 The <class> numbers are associated with the following calibration
Classes:

<class
>

Class Description

1 S11A Reflection standard
2 S11B Reflection standard
3 S11C Reflection standard
4 S21T Thru/Delay standard
5 S22A Reflection standard
6 S22B Reflection standard
7 S22C Reflection standard
8 S12T Thru/Delay standard
3-port analyzers only
9 S33A Reflection standard
10 S33B Reflection standard
11 S33C Reflection standard
12 S32T Thru/Delay standard
13 S23T Thru/Delay standard
14 S31T Thru/Delay standard
15 S13T Thru/Delay standard

TRL Calibration
16 TRL "T" Thru standard
17 TRL "R" Reflect standard
18 TRL "L" Thru standard

<std> Standard number to be assigned to the class; Choose a standard
between 1 and 8. One standard is mandatory; up to six additional
standards are optional.

385

Examples Assigns standard 3 to S11A class:
 SENS:CORR:COLL:CKIT:ORD1 3
 Assigns standard 2 and 5 to S21T class class:
 sense:correction:collect:ckit:order4 2,5

Query Syntax SENSe:CORRection:COLLect:CKIT:ORDer<class>?

’Returns only the first standard assigned to the specified class. To query
the remaining standards, use
SENSe:CORRection:COLLect:CKIT:OLIST[1-15]?

Return Type Character.

Overlapped? No
Default Not Applicable

SENSe:CORRection:COLLect:CKIT:RESet <num>
(Write-only) Resets the selected calibration kit to factory default definition values.
Parameters
<num> The number of the calibration kit to be reset. Choose any integer

between:
 1 and 8

Examples SENS:CORR:COLL:CKIT:RESet 1

 sense:correction:collect:ckit:reset 4

Query Syntax Not Applicable
Overlapped? No
Default Not Applicable

SENSe:CORRection:COLLect:CKIT[:SELect] <num>
(Read-Write) Selects (makes active) a calibration kit for performing a calibration or for
modifying standards. All subsequent "CKIT" commands that are sent apply to this selected
calibration kit. Select a calibration standard using SENS:CORR:COLL:CKIT:STAN <num>
Parameters
<num> The number of the calibration kit. Choose from:

Use SENSe:CORRection:COLLect:CKIT:RESet to restore Cal Kits to
default values.

<num> Name
1 User Defined 1
2 User Defined 2
3 User Defined 3
4 User Defined 4

 ’’
 ’’
 ’’

48 User Defined 48
49 User Defined 49
50 User Defined 50

386

99 ECAL module

Examples SENS:CORR:COLL:CKIT 2

 sense2:correction:collect:ckit:select 7

Query Syntax SENSe:CORRection:COLLect:CKIT?
Return Type Character

Overlapped? No
Default 1

SENSe:CORRection:COLLect:CKIT:STANdard:C0 <num>
(Read-Write) Sets the C0 value (the first capacitance value) for the selected standard.
Parameters
<num> Value for C0 in picofarads

Examples The following commands set C0=15 picofarads:

SENS:CORR:COLL:CKIT:STAN:C0 15
 sense:correction:collect:ckit:standard:c0 15

Query Syntax SENSe:CORRection:COLLect:CKIT:STANdard:C0?
Return Type Character

Overlapped? No
Default Not Applicable

SENSe:CORRection:COLLect:CKIT:STANdard:C1 <num>
(Read-Write) Sets the C1 value (the second capacitance value) for the selected standard.
Parameters
<num> Value for C1 in picofarads

Examples The following two commands set C1=15 picofarads:

SENS:CORR:COLL:CKIT:STAN:C1 15
 sense:correction:collect:ckit:standard:c1 15

Query Syntax SENSe:CORRection:COLLect:CKIT:STANdard:C1?
Return Type Character

Overlapped? No
Default Not Applicable

SENSe:CORRection:COLLect:CKIT:STANdard:C2 <num>
(Read-Write) Sets the C2 value (the third capacitance value) for the selected standard.
Parameters
<num> Value for C2 in picofarads

387

Examples The following two commands set C2=(-15) picofarads:
SENS:CORR:COLL:CKIT:STAN:C2 -15
 sense:correction:collect:ckit:standard:c2 -15

Query Syntax SENSe:CORRection:COLLect:CKIT:STANdard:C2?
Return Type Character

Overlapped? No
Default Not Applicable

SENSe:CORRection:COLLect:CKIT:STANdard:C3 <num>
(Read-Write) Sets the C3 value (the fourth capacitance value) for the selected standard.
Parameters
<num> Value for C3 in picofarads

Examples The following two commands set C3=15 picofarads:

SENS:CORR:COLL:CKIT:STAN:C3 15
 sense:correction:collect:ckit:standard:c3 15

Query Syntax SENSe:CORRection:COLLect:CKIT:STANdard:C3?
Return Type Character

Overlapped? No
Default Not Applicable

SENSe:CORRection:COLLect:CKIT:STANdard:CHARacter <char>

Note: Character is sometimes referred to as Medium

(Read-Write) Sets the media type of the selected calibration standard.
Parameters
<char> Media type of the standard. Choose from:

 Coax - Coaxial Cable
 Wave - Waveguide

Examples SENS:CORR:COLL:CKIT:STAN:CHAR COAX

 sense:correction:collect:ckit:standard:character wave

Query Syntax SENSe:CORRection:COLLect:CKIT:STANdard:CHARacter?
Return Type Character

Overlapped? No
Default Coax

SENSe:CORRection:COLLect:CKIT:STANdard:DELay <num>
(Read-Write) Sets the electrical delay value for the selected standard.
Parameters
<num> Electrical delay in seconds

388

Examples SENS:CORR:COLL:CKIT:STAN:DEL 50e-12

 sense2:correction:collect:ckit:standard:delay 50ps

Query Syntax SENSe:CORRection:COLLect:CKIT:STANdard:DELay?
Return Type Character

Overlapped? No
Default Not Applicable

SENSe:CORRection:COLLect:CKIT:STANdard:FMAX <num>
(Read-Write) Sets the maximum frequency for the selected standard.
Parameters
<num> Maximum frequency in Hertz.

Examples SENS:CORR:COLL:CKIT:STAN:FMAX 9e9

 sense:correction:collect:ckit:standard:fmax 9Ghz

Query Syntax SENSe:CORRection:COLLect:CKIT:STANdard:FMAX?
Return Type Character

Overlapped? No
Default Not Applicable

SENSe:CORRection:COLLect:CKIT:STANdard:FMIN <num>
(Read-Write) Sets the minumum frequency for the selected standard.
Parameters
<num> Minimum frequency in Hertz.

Examples SENS:CORR:COLL:CKIT:STAN:FMIN 1e3

 sense:correction:collect:ckit:standard:fmin 1khz

Query Syntax SENSe:CORRection:COLLect:CKIT:STANdard:FMIN?
Return Type Character

Overlapped? No
Default Not Applicable

SENSe:CORRection:COLLect:CKIT:STANdard:IMPedance <num>

Note: Impedance is sometimes referred to as Z0

(Read-Write) Sets the characteristic impedance for the selected standard.
Parameters
<num> Impedance in Ohms

Examples SENS:CORR:COLL:CKIT:STAN:IMP 75

 sense:correction:collect:ckit:standard:impedance 50.3

389

Query Syntax SENSe:CORRection:COLLect:CKIT:STANdard:IMPedance?
Return Type Character

Overlapped? No
Default 50

SENSe:CORRection:COLLect:CKIT:STANdard:L0 <num>
(Read-Write) Sets the L0 value (the first inductance value) for the selected standard.
Parameters
<num> Value for L0 in picohenries

Examples The following two commands set L0=15 picohenries:

SENS:CORR:COLL:CKIT:STAN:L0 15
 sense:correction:collect:ckit:standard:l0 15

Query Syntax SENSe:CORRection:COLLect:CKIT:STANdard:L0?
Return Type Character

Overlapped? No
Default Not Applicable

SENSe:CORRection:COLLect:CKIT:STANdard:L1 <num>
(Read-Write) Sets the L1 value (the second inductance value) for the selected standard.
Parameters
<num> Value for L1 in picohenries

Examples The following two commands set L1=15 picohenries:

SENS:CORR:COLL:CKIT:STAN:L1 15
 sense:correction:collect:ckit:standard:l1 15

Query Syntax SENSe:CORRection:COLLect:CKIT:STANdard:L1?
Return Type Character

Overlapped? No
Default Not Applicable

SENSe:CORRection:COLLect:CKIT:STANdard:L2 <num>
(Read-Write) Sets the L2 value (the third inductance value) for the selected standard.
Parameters
<num> Value for L2 in picohenries

Examples The following two commands set L2=15 picohenries:

SENS:CORR:COLL:CKIT:STAN:L2 15
 sense:correction:collect:ckit:standard:l2 15

Query Syntax SENSe:CORRection:COLLect:CKIT:STANdard:L2?

390

Return Type Character

Overlapped? No
Default Not Applicable

SENSe:CORRection:COLLect:CKIT:STANdard:L3 <num>
(Read-Write) Sets the L3 value (the fourth inductance value) for the selected standard.
Parameters
<num> Value for L3 in picohenries

Examples The following two commands set L3=15 picohenries:

SENS:CORR:COLL:CKIT:STAN:L3 15
 sense:correction:collect:ckit:standard:l3 15

Query Syntax SENSe:CORRection:COLLect:CKIT:STANdard:L3?
Return Type Character

Overlapped? No
Default Not Applicable

SENSe:CORRection:COLLect:CKIT:STANdard:LABel <name>
(Read-Write) Sets the label for the selected standard. The label is used to prompt the user to
connect the specified standard.
Parameters
<name> Label for the standard; Must be enclosed in quotes. Any string between 1

and 12 characters long. Cannot begin with a numeric.

Examples SENS:CORR:COLL:CKIT:STAN:LAB ’OPEN’

 sense:correction:collect:ckit:standard:label ’Short2’

Query Syntax SENSe:CORRection:COLLect:CKIT:STANdard:LABel?
Return Type String

Overlapped? No
Default Not Applicable

SENSe:CORRection:COLLect:CKIT:STANdard:LOSS <num>
(Read-Write) Sets the insertion loss for the selected standard.
Parameters
<num> Insertion loss in Mohms / sec. (MegaOhms per second of electrical delay)

Examples SENS:CORR:COLL:CKIT:STAN:LOSS 3.5e9

 sense:correction:collect:ckit:standard:loss 3

Query Syntax SENSe:CORRection:COLLect:CKIT:STANdard:LOSS?
Return Type Character

391

Overlapped? No
Default Not Applicable

SENSe:CORRection:COLLect:CKIT:STANdard[:SELECT] <num>
(Read-Write) Selects the calibration standard. All subsequent "CKIT" commands to modify a
standard will apply to the selected standard. Select a calibration kit using
SENS:CORR:COLL:CKIT:SEL
Parameters
<num> Number of the standard. Choose any number between:

 1 and 30

Examples SENS:CORR:COLL:CKIT:STAN 3

 sense:correction:collect:ckit:standard:select 8

Query Syntax SENSe:CORRection:COLLect:CKIT:STANdard[:SELect]?
Return Type Character

Overlapped? No
Default 1

SENSe:CORRection:COLLect:CKIT:STANdard:TYPE <char>
(Read-Write) Sets the type for the selected standard.
Parameters
<char> Choose from:

 OPEN
 SHORT
 LOAD
 SLOAD (sliding load)
THRU (through)
ARBI(arbitrary)

Examples SENS:CORR:COLL:CKIT:STAN:TYPE LOAD

 sense:correction:collect:ckit:standard:type short

Query Syntax SENSe:CORRection:COLLect:CKIT:STANdard:TYPE?
Return Type Character

Overlapped? No
Default Not Applicable

SENSe:CORRection:COLLect:CKIT:STANdard:TZReal <num>
(Read-Write) Sets the TZReal component value of the Terminal Impedance for the selected
standard.
Note: Only applicable when the Standard Type is set to ARBI
Parameters
<num> Value for TZReal in Ohms

Examples The following commands set TZReal=15 Ohms:

SENS:CORR:COLL:CKIT:STAN:TZReal 15

392

 sense:correction:collect:ckit:standard:TZReal 15

Query Syntax SENSe:CORRection:COLLect:CKIT:STANdard:TZReal?
Return Type Character

Overlapped? No
Default Not Applicable

SENSe:CORRection:COLLect:CKIT:STANdard:TZImag <num>
(Read-Write) Sets the TZImag component value of the Terminal Impedance for the selected
standard.
Note: Only applicable when the Standard Type is set to ARBI
Parameters
<num> Value for TZImag in Ohms

Examples The following two commands set TZImag=15 Ohms:

SENS:CORR:COLL:CKIT:STAN:TZImag 15
 sense:correction:collect:ckit:standard:TZImag 15

Query Syntax SENSe:CORRection:COLLect:CKIT:STANdard:TZImag?
Return Type Character

Overlapped? No
Default Not Applicable

Sense:Correction:CSET Commands

Performs actions on calibration sets.

• Click on a blue keyword to view the command details.
• See a List of all commands in this block.
• Learn about Measurement Calibration

SENSe<cnum>:CORRection:CSET:CATalog?
(Read-only) Returns a string containing a list of comma-separated GUIDs for Cal Sets in the
following format:
{FD6F863E-9719-11d5-8D6C-00108334AE96},
{1B03B2CE-971A-11d5-8D6C-00108334AE96},
{2B893E7A-971A-11d5-8D6C-00108334AE96}
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1

Examples SENS:CORR:CSET:CAT?

 sense2:correction:cset:catalog?

393

Overlapped? No
Default Not Applicable

SENSe<cnum>:CORRection:CSET:DELete <string>
(Write-only) Deletes a Cal Set from the set of available Cal Sets. This command immediately
updates the Cal Set file on the hard drive. Using the Cal Sets collection is a convenient way to
manage Cal Sets.
If the Cal Set identified by the GUID is currently in use, the Cal Set will not be deleted. If you
still want to delete a Cal Set that is in use, either turn off correction on the subscribing
measurement, turn off subscribed channels, or select a different Cal Set for the subscribed
channel.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<string> The GUID of the Cal Set to be deleted. The curly brackets and hyphens

must be included. Not case sensitive.

Examples SENS:CORR:CSET:DEL ’{2B893E7A-971A-11d5-8D6C-00108334AE96}’

 sense2:correction:cset:delete ’{2B893E7A-971A-11d5-8D6C-
00108334AE96}’

Query Syntax Not Applicable

Overlapped? No
Default Not Applicable

SENSe<cnum>:CORRection:CSET:DESCription <string>
(Read-Write) Sets or returns the descriptive string assigned to the selected Cal Set. Change
this string so that you can easily identify each Cal Set. Select the Cal Set using
SENSe:CORRection:CSET:GUID
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<string> The descriptive string associated with the currently-selected Cal Set

Examples SENS:CORR:CSET:DESC ’MyCalSet’

 sense2:correction:cset:description ’thisCalSet’

Query Syntax SENSe<cnum>:CORRection:CSET:DESCription?
Return Type String

Overlapped? No
Default Not Applicable

SENSe<cnum>:CORRection:CSET:GUID <string>
(Read-Write) Selects the Cal Set identified by the string parameter (GUID) and applies it to the
specified channel.
A Cal Set cannot be selected for a channel which is not On.
If the stimulus settings of the selected Cal Set differ from those of the selected channel, the
instrument will automatically change the channel’s settings to match the Cal Set.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<string> GUID of the desired Cal Set. The curly brackets and hyphens must be

included.

394

Examples SENS:CORR:CSET:GUID ’{2B893E7A-971A-11d5-8D6C-
00108334AE96}’
 sense2:correction:cset:guid ’{2B893E7A-971A-11d5-8D6C-
00108334AE96}’

Query Syntax SENSe<cnum>:CORRection:CSET:GUID?

Returns the GUID of the currently-selected Cal Set for the specified
channel.

Return Type String

Overlapped? No
Default Not Applicable

SENSe<cnum>:CORRection:CSET[:SELect] <char>
(Read-Write) Restores a correction data set from memory. The file name is "CSETx.cst"
where x is the user number assigned to <char>, and .cst specifies a cal set and instrument
state. This is not the same syntax as a file saved through the default choices from the front
panel, which is "at00x.cst". For more information on the file naming syntax, see the MMEMory
subsystem.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<char> Choose from:

 DEF - Presets the analyzer
 USER01- Restores User01 calibration data
 USER02 - Restores User02 calibration data
 through...
 USER10 - Restores User10 calibration data

Examples SENS:CORR:CSET DEF

 sense2:correction:cset:select user02

Query Syntax SENSe<cnum>:CORRection:CSET[:SELect]?
Return Type Character

Overlapped? No
Default DEF

SENSe<cnum>:CORRection:CSET:SAVE <char>
Write a correction data set to memory or Read the last correction set saved. The file name is
saved as "CSETx.cst" where x is the user number assigned to <char>, and .cst specifies a cal
set and instrument state. This is not the same syntax as a file saved through the default
choices from the front panel, which is "at00x.cst". For more information on the filenaming
syntax, see the MMEMory subsystem.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<char> Choose from:

 USER01
 USER02...
 USER10

Examples SENS:CORR:CSET:SAVE USER03

 sense2:correction:cset:save user09

Query Syntax SENSe<cnum>:CORRection:CSET:SAVE?

395

 Queries the last correction set saved.
Return Type Character

Overlapped? No
Default Not applicable

SENSe<ch>:CORRection:CSET:TYPE:CATalog?<optional enum>
(Read-Write) Query the caltypes available in the selected calset. The user can specify the
output format: a comma separated list of guids or a list of names..
Parameters
<ch> Any existing channel number. If unspecified, value is set to 1

<optional
enum>

NAME: (default) returns the string name of the caltype
GUID: Returns the guid of the caltype

Examples SENS:CORR:CSET:TYPE:CAT

 SENS2:CORRection:CSET:TYPE:CAT

Query Syntax Not Applicable
Return Type string
Overlapped? No
Default Not Applicable

Sense:Correction:Collect:Guided Commands

Performs and applies a GUIDED measurement calibration and other error correction features.

• Click on a blue keyword to view the command details.
• See a List of all commands in this block.
• See an example using some of these commands.
• Learn about Measurement Calibration

SENSe<cnum>:CORRection:COLLect:GUIDed:ACQuire <std>
(Write-only) Initiates the measurement of the specified calibration standard
 Executing this command with an unnecessary standard has no affect.
The measured data is stored and used for subsequent calculations of error correction
coefficients. All standards must be measured before a calibration can be completed. Any
measurement can be repeated until the SENS:CORR:COLL:GUID:SAVE command is

396

executed.
Query the user prompt description using SENS:CORR:COLL:GUID:DESC?
 Query the required calibration steps using SENS:CORR:COLL:GUID:STEP?
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<std> Choose from:STAN1, STAN2, STAN3, through STAN40

Examples SENS:CORR:COLL:GUID:ACQ STAN1

 sense2:correction:collect:guided:acquire stan1

Query Syntax Not Applicable
Return Type Character

Overlapped? No
Default Not Applicable

SENSe<cnum>:CORRection:COLLect:GUIDed:CKIT:PORT<pnum>:CATalog?
(Read-only) Returns a comma-separated list of valid kits for each port. In addition to
mechanical calibration kits, this will include applicable characterizations found within ECal
modules currently connected to the PNA. Use items in the list to select the kit to be used with
the SENS:CORR:COLL:GUID:CKIT:PORT command.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<pnum> Any existing port number: 1,2 or 3 (for 3-port analyzers). If unspecified,

value is set to 1

Examples SENS:CORR:COLL:GUID:CKIT:PORT1:CAT?

 ’When "Type N (50) male" is specified for connector type, returns:
 "85054D, 85032F"

Return Type String

Overlapped? No
Default Not Applicable

SENSe<cnum>:CORRection:COLLect:GUIDed:CKIT:PORT<pnum>[:SELect]
<kit>
(Read-Write) Specifies the calibration kit for each port to be used during a guided calibration.
An unused port does NOT need to have a specified Cal Kit.
Note:
 1. Specify the connector type for the port with SENS:CORR:COLL:GUID:CONN:PORT.
 2. Query the valid available kits for each port with
SENS:CORR:COLL:GUID:CKIT:PORT:CAT?
 3. Specify the kit using this command.
 4. Perform a query of this command. If the <kit> parameter was incorrectly entered, an error
will be returned.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<pnum> Any existing port number: 1,2 or 3 (for 3-port analyzers). If unspecified,

value is set to 1
<kit> Calibration kit to be used for the specified port.

Examples SENS:CORR:COLL:GUID:CKIT:PORT1 ’85055A’

397

sense2:correction:collect:ckit:port2:select ’85092-60010 User 1 ECal’

Query Syntax SENSe:CORRection:COLLect:GUIDed:CKIT:PORT<pnum>[:SELect]?
Return Type String - If the <kit> parameter was incorrectly entered while writing, an

error will be returned.

Overlapped? No
Default Not Applicable

SENSe<ch>:CORRection:COLLect:GUIDed:CONNector:CATalog?
(Read only) Returns a list of valid connectors based on the connector descriptions of the
available cal kits. Use an item from the returned list to specify a connector for
SENS:CORR:COLL:GUID:CONN:PORT
Parameters

none

Examples SENS:CORR:COLL:GUID:CONN:CAT?

 Returns:

Type N (50) female, Type N (50) male, APC 7 (50), 3.5 mm (50) male,
3.5 mm (50) female, User Connector A

Query Syntax Not Applicable
Return Type string: comma separated string values
Overlapped? No
Default Not Applicable

SENSe<cnum>:CORRection:COLLect:GUIDed:CONNector:PORT<pnum>[:SEL
ect] <conn>
(Read-Write) Specifies a connector type for every port during the Guided Calibration
procedure. Valid connector names are stored within calibration kits. Some cal kits may include
both male and female connectors. Therefore, specifying connector gender may be required.
Unused ports must be defined as or Not used. If all ports are defined as "Not used", a guided
calibration cannot be performed.

• A single port with a valid <conn> name indicates a 1-Port calibration will be
performed.

• Two ports with valid <conn> names indicate either a 2-Port or TRL calibration will be
performed depending on the standards definition found within the cal kit and the
capability of the analyzer. (The analyzer must have 4 receivers for TRL calibrations.).

• Three ports with valid <conn> names indicate a 3-Port calibration will be performed.
Note:
 1. Use SENS:CORR:COLL:GUID:CONN:CAT? to query available connectors before
specifying the port connector.
 2. Select a connector type using this command.
 3. Perform a query of this command. If the <conn> parameter was incorrectly entered, an error
will be returned.
 4. Specify the cal kit to use for each port with SENS:CORR:COLL:GUID:CKIT:PORT
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<pnum> Any existing port number: 1,2 or 3 (for 3-port analyzers). If unspecified,

value is set to 1
<conn> DUT connector type to connect with analyzer port <pnum>

398

Some kits may include both male and female connectors so specifying
gender may be required.
Valid connector names are stored within calibration kits. Query available
connectors using
SENSe:CORRection:COLLect:GUIDed:CONNector:CATalog?

Examples SENS:CORR:COLL:GUID:CONN:PORT1 ’Type N (50) female’

’Indicates the DUT port that connects with the analyzer’s Port1 is a
TypeN 50 ohm Female connector.

Query Syntax SENSe<cnum>:CORRection:COLLect:GUIDed:CONNector:PORT<pnum

>[:SELect]?
Return Type String

Overlapped? No
Default Not Applicable

SENSe<cnum>:CORRection:COLLect:GUIDed:DESCription? <step>
(Read-only) Returns the connection description for the specified calibration step.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<step> A number from 1 to the number of steps required to complete the

calibration (Use SENS:CORR:COLL:GUID:STEP? to query the number
of steps)

Examples SENS:CORR:COLL:GUID:DESC ? 10

’Returns:
 Connect APC 7 Open to port3

Return Type String

Overlapped? No
Default Not Applicable

SENSe<cnum>:CORRection:COLLect:GUIDed:INITiate [GUID [,bool]]
(Write-only) Initiates a guided calibration. Either create a new cal set or optionally add to /
overwrite a specified cal set.
The PNA determines the measurements needed to perform the calibration using the settings
specified from the SENS:CORR:COLL:GUID:CONN:PORT and
SENS:CORR:COLL:GUID:CKIT:PORT commands.
After this command is executed, subsequent commands can be used to query the number of
measurement steps, issue the acquisition commands, query the connection description strings,
and subsequently complete a guided calibration.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<GUID> Optional argument. If not specified a new calset is created.

Calset GUID in the form: "{GUID}"; including quotes and curly brackets.
The guided cal that is being initiated either supplements the existing cal
set, or overwrites the cal set depending on the method, connectors, and
ports selected. Learn more about Cal Sets.
Must be a valid GUID; an error is reported if the GUID is not found.
Query all Cal Set GUIDs with SENS:CORR:CSET:CAT?

<bool> Optional argument.

399

False (0) If cal set stimulus settings differ from the existing channel, do
not change channel stimulus settings. Return an error. This is the
default setting if not specified.
True (1) If cal set stimulus settings differ from the existing channel,
change the channel stimulus settings to match the cal set settings..

Examples SENS:CORR:COLL:GUID:INIT "{2B893E7A-971A-11d5-8D6C-

00108334AE96}",1
 sense2:correction:collect:guided:initiate

Query Syntax Not Applicable

Overlapped? No
Default Not Applicable

SENSe<cnum>:CORRection:COLLect:GUIDed:METHod <char>

(Read-Write) Selects from one of several algorithms available for performing a guided
calibration.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<char> Note: to avoid errors, type the following <char> in the format shown in

boldface, example use UNKN and not UNKNown.

 DEFAULT - Informs guided calibrations to use the default algorithm
when computing the number of needed standards acquisition steps. (In
this release, the default algorithm is ADAPTER REMOVAL).
ADAPremove - Use the adapter removal algorithm
FLUSH - When ECal calkits are specified, use the FLUSH THRU
algorithm. This selection has no affect if ECal calkits are not used or if
the ECal module selected is not insertable.
UNKNown - Use the Unknown THRU algorithm for 2-Port calibrations for
non-insertable devices. This selection is not available on instruments
which do not have 4 receivers.
TRL - Select TRL caltype for 2-Port guided cals. Valid for "TRL ready"
calkits with properly assigned TRL cal classes.
SOLT - Select SOLT caltype for 2-Port guided cals. Valid for any kit with
properly assigned SOLT cal classes.

Examples SENS:CORR:COLL:GUID:METH
 sense2:correction:collect:guided:method unkn

Query Syntax Not Applicable

Overlapped? No
Default Not Applicable

SENSe<cnum>:CORRection:COLLect:GUIDed:SAVE
(Write-only) Completes the guided cal by computing the error correction terms, turning
Correction ON, and saving the calibration to a cal set.

400

If all of the required standards have not been measured, the calibration will not complete
properly.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1

Examples SENS:CORR:COLL:GUID:SAVE

 sense2:correction:collect:guided:save

Query Syntax Not Applicable

Overlapped? No
Default Not Applicable

SENSe<cnum>:CORRection:COLLect:GUIDed:STEPs?
(Read-only) Returns the number of measurement steps required to complete the current
guided calibration. This command is sent after the SENS:CORR:COLL:GUID:INIT,
SENS:CORR:COLL:GUID:CONN:PORT and SENS:CORR:COLL:GUID:CKIT:PORT
commands.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1

Examples SENS:CORR:COLL:GUID:STEP?

 sense2:correction:collect:guided:steps?

Return Type Integer

Overlapped? No
Default Not Applicable

Sense:Couple Command

Learn about Alternate Sweep

SENSe<cnum>:COUPle <ALL | NONE>
(Read-Write) Sets the sweep mode as Chopped or Alternate.
Parameters
<cnum> Any existing channel number; if unspecified, value is set to 1.
<ALL | NONE> ALL - Sweep mode set to Chopped - reflection and transmission

measured on the same sweep.
NONE - Sweep mode set to Alternate - reflection and transmission
measured on separate sweeps. Improves Mixer bounce and Isolation
measurements. Increases sweep time

Examples SENS:COUP ALL

 sense2:couple none

Query Syntax SENSe<cnum>:COUPle?
Return Type Character

401

Overlapped? No
Default ALL

Sense:Frequency Commands

Sets the frequency sweep functions of the analyzer.

• Click on a blue keyword to view the command details.
• See a List of all commands in this block.
• See an example using some of these commands.
• Learn about Frequency Sweep

SENSe<cnum>:FREQuency:CENTer <num>
(Read-Write) Sets the center frequency of the analyzer.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<num> Center frequency. Choose any number between the minimum and

maximum frequency limits of the analyzer. Units are Hz
Note: This command will accept MIN or MAX instead of a numeric
parameter. See SCPI Syntax for more information.

Examples SENS:FREQ:CENT 1000000

 sense2:frequency:center 1mhz

Query Syntax SENSe<cnum>:FREQuency:CENTer?
Return Type Character

Overlapped? No
Default Center of the analyzer’s frequency span

SENSe<cnum>:FREQuency[:CW |:FIXed] <num>
(Read-Write) Sets the Continuous Wave (or Fixed) frequency. Must also send
SENS:SWEEP:TYPE CW to put the analyzer into CW sweep mode.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<num> CW frequency. Choose any number between the minimum and

maximum frequency limits of the analyzer. Units are Hz.
Note: This command will accept MIN or MAX instead of a numeric
parameter. See SCPI Syntax for more information.

Examples SENS:FREQ 1000000

 SENS:FREQ:CW MIN
 sense2:frequency:fixed 1mhz

402

Query Syntax SENSe<cnum>:FREQuency[:CW | :FIXed]?
Return Type Character

Overlapped? No
Default 1 GHz

SENSe<cnum>:FREQuency:SPAN <num>
(Read-Write) Sets the frequency span of the analyzer.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<num> Frequency span. Choose any number between:

 0 (minimum) and the maximum frequency span of the analyzer.
 Units are Hz
Note: This command will accept MIN or MAX instead of a numeric
parameter. See SCPI Syntax for more information.

Examples SENS:FREQ:SPAN 1000000

 sense2:frequency:span max

Query Syntax SENSe<cnum>:FREQuency:SPAN?
Return Type Character

Overlapped? No
Default Maximum frequency span of the analyzer

SENSe<cnum>:FREQuency:STARt <num>
(Read-Write) Sets the start frequency of the analyzer.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<num> Start frequency. Choose any number between the MIN and MAX

frequency limits of the analyzer. Units are Hz

Note: If FREQ:START is set greater than FREQ:STOP, then STOP is set
equal to START.

Note: This command will accept MIN or MAX instead of a numeric
parameter. See SCPI Syntax for more information.

Examples SENS:FREQ:STAR 1000000

 sense2:frequency:start MIN

Query Syntax SENSe<cnum>:FREQuency:STARt?
Return Type Character

Overlapped? No
Default Minimum frequency of the analyzer

SENSe<cnum>:FREQuency:STOP <num>
(Read-Write) Sets the stop frequency of the analyzer.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<num> Stop frequency. Choose any number between:

 the minimum and maximum frequency limits of the analyzer. Units are Hz

If FREQ:STOP is set less than FREQ:START, then START will be set equal

403

to STOP.

Note: This command will accept MIN or MAX instead of a numeric
parameter. See SCPI Syntax for more information.

Examples SENS:FREQ:STOP 1000000

 sense2:frequency:stop max

Query Syntax SENSe<cnum>:FREQuency:STOP?
Return Type Character

Overlapped? No
Default Maximum frequency of the analyzer

Sense:Offset Commands

Sets the offset frequency functions, causing the stimulus and response frequencies to be
different.

• Click on a blue keyword to view the command details.
• See a List of all commands in this block.
• Learn about Frequency Offset

SENSe<cnum>:OFFSet:CW <bool>
(Read-Write) Turns stimulus CW Override mode ON or OFF. Use this setting to establish a
fixed (CW) stimulus frequency while measuring the Response over a swept frequency range.
Learn more about Frequency Offset.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<bool> ON (or 1) - turns CW override ON.

OFF (or 0) - turns CW overide OFF.

Examples SENS:OFFS:CW ON

 sense2:offset:cw off

Query Syntax SENSe<cnum>:OFFSet:CW?
Return Type Boolean

Overlapped? No
Default OFF

SENSe<cnum>:OFFSet:DIVisor <num>
(Read-Write) Specifies (along with the multiplier) the value to multiply by the stimulus. Learn
more about Frequency Offset.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<num> Divisor value. Range is 1 to 1000

404

Examples SENS:OFFS:DIV 3

 sense2:offset:divisor 2

Query Syntax SENSe<cnum>:OFFSet:DIVisor?
Return Type Character

Overlapped? No
Default 1

SENSe<cnum>:OFFSet:MULTiplier <num>
(Read-Write) Specifies (along with the divisor) the value to multiply by the stimulus. Learn
more about Frequency Offset.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<num> Multiplier value. Range is +/- 1000. Negative multipliers cause the

stimulus to sweep in decreasing direction. For mixer measurements, this
would be for setups requiring the RF frequency to be less than LO
frequency

Examples SENS:OFFS:MULT 2

 sense2:offset:multiplier 4

Query Syntax SENSe<cnum>:OFFSet:MULTplier?
Return Type Character

Overlapped? No
Default 1

SENSe<cnum>:OFFSet:OFFSet <num>
(Read-Write) Specifies an absolute offset frequency in Hz. For mixer measurements, this
would be the LO frequency. Learn more about Frequency Offset.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<num> Offset frequency. Range is +/- 1000 GHz. Offsets can be positive or

negative

Examples SENS:OFFS:OFFS 1GHz

 sense2:offset:offset 1e9

Query Syntax SENSe<cnum>:OFFSet:OFFSet?
Return Type Character

Overlapped? No
Default 0 Hz

SENSe<cnum>:OFFSet:STARt?
(Read-Only) Returns the response start frequency Learn more about Frequency Offset.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1

Examples SENS:OFFS:STAR?

 sense2:offset:start?

405

Return Type Character

Overlapped? No
Default Not applicable

SENSe<cnum>:OFFSet:[STATe] <bool>
(Read-Write) Enables Frequency Offset Mode on ALL measurements that are present on the
active channel. This immediately causes the source and receiver to tune to separate
frequencies. The receiver frequencies are specified with the other SENS:OFFSet commands.
To make the stimulus settings use the SENS:FREQ commands.
Tip: To avoid unnecessary errors, first make other offset frequency settings, then set
Frequency Offset ON. Learn more about Frequency Offset.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<bool> ON (or 1) - turns Frequency Offset ON.

OFF (or 0) - turns Frequency Offset OFF.

Examples SENS:OFFS ON

 sense2:offset:state off

Query Syntax SENSe<cnum>:OFFSet:[STATe]?
Return Type Boolean

Overlapped? No
Default OFF (0)

SENSe<cnum>:OFFSet:STOP?
(Read-Only) Returns the response stop frequency. Learn more about Frequency Offset.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1

Examples SENS:OFFS:STOP

 sense2:offset:stop

Return Type Character

Overlapped? No
Default Not applicable

Sense:Power Command

Learn about Receiver Attenuation

SENSe<cnum>:POWer:ATTenuation <recvr>,<num>
(Read-Write) Sets the attenuation level for the specified receiver.
Note: Attenuation cannot be set with Sweep Type set to Power
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<recvr> Receiver to get attenuation. Choose from:

406

 ARECeiver - receiver A
 BRECeiver - receiver B

<num> Choose from:
 0 to 35 dB - in 5 dB steps
 If a number other than these is entered, the analyzer will select the next
lower valid value. For example, if 19.9 is entered for <num> the analyzer
will switch in 15 dB attenuation.

Examples SENS:POW:ATT AREC,10

 sense2:power:
 attentuation breceiver,30

Query Syntax SENSe<cnum>:POWer

 :ATTenuation? <rec>
Return Type Character

Overlapped? No
Default 0

Sense:Roscillator Command

Learn about the Reference Osc.

SENSe:ROSCillator:SOURce?
(Read-only) Applying a signal to the Reference Oscillator connector automatically sets the
Reference Oscillator to EXTernal. This command allows you to check that it worked.
 EXT is returned when a signal is present at the Reference Oscillator connector.
 INT is returned when NO signal is present at the Reference Oscillator connector.

Examples SENS:ROSC:SOUR?

 sense:roscillator:source?

Return Type Character

Overlapped? No
Default Not applicable

Sense:Segment Commands

Defines the segment sweep settings. Enable segment sweep with SENS:SWE:TYPE SEGMent.

407

• Click on a blue keyword to view the command details.
• See a List of all commands in this block.
• Learn about Segment Sweep

SENSe<cnum>:SEGMent<snum>:ADD
(Write-only) Adds a segment.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<snum> Segment number to add. If unspecified, value is set to 1. Segment

numbers must be sequential.

 If a new number is added where one currently exists, the existing
segment and those following are incremented by one.

Examples Two Segments exist (1 and 2). The following command will add a new

segment (1). The existing (1 and 2) will become (2 and 3) respectively.
SENS:SEGM1:ADD
 sense2:segment1:add

Query Syntax Not applicable. Use Sense:Segment:Count to determine the number of

segments in a trace.

Overlapped? No
Default Not Applicable

SENSe<cnum>:SEGMent<snum>:BWIDth[:RESolution] <num>
(Read-Write) Sets the IFBandwidth for the specified segment. First set
SENS:SEGM:BWIDth:CONTrol ON. All subsequent segments that are added assume the new
IF Bandwidth value.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<snum> Segment number to modify. Choose any existing segment number.
<num> IF Bandwidth. Choose from:

 1 | 2 | 3 | 5 | 7 | 10 | 15 | 20 | 30 | 50 | 70 | 100 | 150 | 200 | 300 | 500 |
700 | 1k | 1.5k | 2k | 3k | 5k | 7k | 10k | 15k | 20k | 30k | 35k | 40k |
 If a number other than these is entered, the analyzer will round up to the
closest valid number (unless a number higher than the maximum in
entered.)
Note: This command will accept MIN or MAX instead of a numeric
parameter. See SCPI Syntax for more information.

Examples SENS:SEGM:BWID 1KHZ

 sense2:segment2:bwidth:resolution max

408

Query Syntax SENSe<cnum>:SEGMent<snum>:BWIDth[:RESolution]?
Return Type Character

Overlapped? No
Default 35k

SENSe<cnum>:SEGMent:BWIDth[:RESolution]:CONTrol <ON | OFF>
(Read-Write) Specifies whether the IF Bandwidth resolution can be set independently for each
segment.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<ON | OFF> ON (or 1) - turns Bandwidth control ON. Bandwidth can be set for each

segment
 OFF (or 0) - turns Bandwidth control OFF. Use channel bandwidth
setting

Examples SENS:SEGM:BWID:CONT ON

 sense2:segment:bwidth:control off

Query Syntax SENSe<cnum>:SEGMent:BWIDth[:RESolution]:CONTrol?
Return Type Boolean (1 = ON, 0 = OFF)

Overlapped? No
Default OFF

SENSe<cnum>:SEGMent:COUNt?
(Read-only) Queries the number of segments that exist in the specified channel.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1

Examples SENS:SEGM:COUNt?

 sense2:segment:count?

Return Type Character

Overlapped? No
Default 1 segment

SENSe<cnum>:SEGMent<snum>:DELete
(Write-only) Deletes the specified sweep segment.
<cnum> Any existing channel number. If unspecified, value is set to 1
<snum> Number of the segment to delete. If unspecified, value is set to 1
Examples SENS:SEGM:DEL

 sense2:segment2:delete

Query Syntax Not applicable

Overlapped? No
Default Not Applicable

SENSe<cnum>:SEGMent:DELete:ALL
(Write-only) Deletes all sweep segments.

409

Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1

Examples SENS:SEGM:DEL:ALL

 sense2:segment:delete:all

Query Syntax Not applicable

Overlapped? No
Default Not Applicable

SENSe<cnum>:SEGMent<snum>:FREQuency:CENTer <num>
(Read-Write) Sets the Center Frequency for the specified segment. The Frequency Span of the
segment remains the same. The Start and Stop Frequencies change accordingly.
Note: All previous segment’s Start and Stop Frequencies that are larger than the new Start
Frequency are changed to the new Start Frequency. All following segment’s start and stop
frequencies that are smaller than the new Stop Frequency are changed to the new Stop
Frequency.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<snum> Segment number to modify. Choose any existing segment number.
<num> Center Frequency in Hz. Choose any number between the minimum and

maximum frequency of the analyzer.
Note: This command will accept MIN or MAX instead of a numeric
parameter. See SCPI Syntax for more information.

Examples SENS:SEGM:FREQ:CENT 1MHZ

 sense2:segment2:frequency:center 1e9

Query Syntax SENSe<cnum>:SEGMent<snum>:FREQuency:CENTer?
Return Type Character

Overlapped? No
Default Stop Frequency of the previous segment. If first segment, start frequency

of the analyzer.

SENSe<cnum>:SEGMent<snum>:FREQuency:SPAN <num>
(Read-Write) Sets the Frequency Span for the specified segment. The center frequency of the
segment remains the same. The start and stop frequencies change accordingly.
Note: All previous segment’s Start and Stop Frequencies that are larger than the new Start
Frequency are changed to the new Start Frequency. All following segment’s start and stop
frequencies that are smaller than the new Stop Frequency are changed to the new Stop
Frequency.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<snum> Segment number to modify. Choose any existing segment number.
<num> Frequency Span in Hz. Choose any number between the minimum and

maximum frequency of the analyzer.
Note: This command will accept MIN or MAX instead of a numeric
parameter. See SCPI Syntax for more information.

Examples SENS:SEGM:FREQ:SPAN 1MHZ

 sense2:segment2:frequency:span max

410

Query Syntax SENSe<cnum>:SEGMent<snum>:FREQuency:SPAN?
Return Type Character

Overlapped? No
Default If first segment, frequency span of the analyzer. Otherwise 0.

SENSe<cnum>:SEGMent<snum>:FREQuency:START <num>
(Read-Write) Sets the Start Frequency for the specified sweep segment.
Note: All other segment Start and Stop Frequency values that are larger than this frequency
are changed to this frequency.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<snum> Segment number to modify. Choose any existing segment number.
<num> Start Frequency in Hz. Choose any number between the minimum and

maximum frequency of the analyzer.
Note: This command will accept MIN or MAX instead of a numeric
parameter. See SCPI Syntax for more information.

Examples SENS:SEGM:FREQ:STAR 1MHZ

 sense2:segment2:frequency:start minimum

Query Syntax SENSe<cnum>:SEGMent<snum>:FREQuency:STARt?
Return Type Character

Overlapped? No
Default Stop Frequency of the previous segment. If first segment, start frequency

of the analyzer.

SENSe<cnum>:SEGMent<snum>:FREQuency:STOP <num>
(Read-Write) Sets the Stop Frequency for the specified sweep segment.
Note: All other segment’s Start and Stop Frequency values that are larger than this frequency
are changed to this frequency.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<snum> Segment number to modify. Choose any existing segment number.
<num> Stop Frequency in Hz. Choose any number between the minimum and

maximum frequency of the analyzer.
Note: This command will accept MIN or MAX instead of a numeric
parameter. See SCPI Syntax for more information.

Examples SENS:SEGM:FREQ:STOP 1MHZ

 sense2:segment2:frequency:stop maximum

Query Syntax SENSe<cnum>:SEGMent<snum>:FREQuency:STOP?
Return Type Character

Overlapped? No
Default If first segment, stop frequency of the analyzer. Otherwise, start

frequency of the segment.

SENSe<cnum>:SEGMent<snum>:POWer[<port>][:LEVel] <num>
(Read-Write) Sets the Port Power level for the specified sweep segment.
 First set SENS:SEGM:POW:CONTrol ON.

411

All subsequent segments that are added assume the new Power Level value.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<snum> Segment number to modify. Choose any existing segment number.
<port> Port number of the source. Choose from 1 or 2. If unspecified, value is

set to 1.
<num> Power level. Choose from any number between:

 -90 and 20

Examples SENS:SEGM:POW 0

 sense2:segment2:power1:level -10

Query Syntax SENSe<cnum>:SEGMent<snum>:POWer[<port>][:LEVel]?
Return Type Character

Overlapped? No
Default 0

SENSe<cnum>:SEGMent:POWer[:LEVel]:CONTrol <ON | OFF>
(Read-Write) Specifies whether Power Level can be set independently for each segment.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<ON | OFF> ON (or 1) - turns Power Level control ON. Power level can be set for

each segment.
 OFF (or 0) - turns Power Level control OFF. Use the channel power level
setting.

Examples SENS:SEGM:POW:CONT ON

 sense2:segment:power:level:control off

Query Syntax SENSe<cnum>:SEGMent:POWer[:LEVel]:CONTrol?
Return Type Boolean (1 = ON, 0 = OFF)

Overlapped? No
Default OFF

SENSe<cnum>:SEGMent<snum>[:STATe] <ON | OFF>
(Read-Write) Turns the specified sweep segment ON or OFF.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<snum> Segment number to be turned ON or OFF
<ON | OFF> ON (or 1) - turns segment ON.

 OFF (or 0) - turns segment OFF.

Examples SENS:SEGM ON

 sense2:segment2:state off

Query Syntax SENSe<cnum>:SEGMent[:STATe]? <snum>
Return Type Boolean (1 = ON, 0 = OFF)

Overlapped? No
Default OFF

412

SENSe<cnum>:SEGMent<snum>:SWEep:POINts <num>
(Read-Write) Sets the number of data points for the specified sweep segment.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<snum> Any existing segment number. If unspecified, value is set to 1
<num> Number of points in the segment. The total number of points in all

segments cannot exceed 16001. A segment can have as few as 1 point.
Note: This command will accept MIN or MAX instead of a numeric
parameter. See SCPI Syntax for more information.

Examples SENS:SEGM:SWE:POIN 51

 sense2:segment2:sweep:points maximum

Query Syntax SENSe<cnum>:SEGMent<snum>:SWEep:POINts?
Return Type Character

Overlapped? No
Default 201

SENSe<cnum>:SEGMent<snum>:SWEep:TIME <num>
(Read-Write) Sets the time the analyzer takes to sweep the specified sweep segment.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<snum> Any existing segment number.
<num> Sweep time in seconds. Choose a number between 0 and 100

Note: This command will accept MIN or MAX instead of a numeric
parameter. See SCPI Syntax for more information.

Examples SENS:SEGM:SWE:TIME 1ms

 sense2:segment2:sweep:time .001

Query Syntax SENSe<cnum>:SEGMent<snum>:SWEep:TIME?
Return Type Character

Overlapped? No
Default Not Applicable

SENSe<cnum>:SEGMent:SWEep:TIME:CONTrol <ON | OFF>
(Read-Write) Specifies whether Sweep Time can be set independently for each sweep
segment.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<ON | OFF> ON (or 1) - turns Sweep Time control ON. Sweep Time can be set for

each segment.
 OFF (or 0) - turns Sweep Time control OFF. Uses the channel Sweep
Time setting.

Examples SENS:SEGM:SWE:TIM:CONT ON

 sense2:segment:sweep:time:control off

Query Syntax SENSe<cnum>:SEGMent:SWEep:TIME:CONTrol?
Return Type Boolean (1 = ON, 0 = OFF)

Overlapped? No

413

Default OFF

SENSe<cnum>:SEGMent<snum>:X:SPACing <char>
(Read-Write) Sets X-axis spacing ON or OFF
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<snum> Any existing segment number. (This parameter is ignored)
<char> LINear - turns X-axis point spacing OFF

OBASe - turns X-axis point spacing ON

Examples SENS:SEGM:X:SPACing LIN

 sense2:segment1:spacing obase

Query Syntax SENSe<cnum>:SEGMent<snum>:X:SPACing?
Return Type Character

Overlapped? No
Default LINear

Sense:Sweep Commands

Specifies the sweep functions of the analyzer.

• Click on a blue keyword to view the command details.

• See a List of all commands in this block.

• Learn about Sweeping

SENSe<cnum>:SWEep:DWELl <num>

(Read-Write) Sets the dwell time between each sweep point.
• Dwell time is ONLY available with SENSe:SWEep:GENeration set to

STEPped; It is Not available in ANALOG.
Sending dwell = 0 is the same as setting SENS:SWE:DWEL:AUTO ON. Sending a
dwell time > 0 sets SENS:SWE:DWEL:AUTO OFF.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<num> Dwell time in seconds.

Note: This command will accept MIN or MAX instead of a

414

numeric parameter. See SCPI Syntax for more information.

Examples SENS:SWE:DWEL .1

 sense2:sweep:dwell min

Query Syntax SENSe<cnum>:SWEep:DWELl?

Return Type Character

Overlapped? No
Default 0 - (Note: dwell time set to 0 is the same as dwell:auto ON)

SENSe<cnum>:SWEep:DWELl:AUTO <ON | OFF>

(Read-Write) Specifies whether or not to automatically calculate and set the minimum
possible dwell time. Setting Auto ON has the same effect as setting dwell time to 0.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<ON | OFF> ON (or 1) - turns dwell ON.

 OFF (or 0) - turns dwell OFF.

Examples SENS:SWE:DWEL:AUTO ON

 sense2:sweep:dwell:auto off

Query Syntax SENSe<cnum>:SWEep:DWELl:AUTO?

Return Type Boolean (1 = ON, 0 = OFF)

Overlapped? No
Default ON

SENSe<cnum>:SWEep:GENeration <char>

(Read-Write) Sets sweep as Stepped or Analog.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<char> Choose from:

STEPped - source frequency is CONSTANT during measurement
of eah displayed point. More accurate than ANALog. Dwell time
can be set in this mode.
ANALog - source frequency is continuously RAMPING during
measurement of each displayed point. Faster than STEPped. Sweep
time (not dwell time) can be set in this mode.

Examples SENS:SWE:GEN STEP

 sense2:sweep:generation analog

Query Syntax SENSe<cnum>:SWEep:GENeration?

Return Type Character

Overlapped? No
Default Analog

415

SENSe<cnum>:SWEep:GROups:COUNt <num>

(Read-Write) Sets the trigger count (groups) for the specified channel.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<num> Count (groups) number. Choose any number between:

 1 and 2e6
 (1 is the same as single trigger)

Examples SENS:SWE:GRO:COUN 10

 sense2:sweep:groups:count 50

Query Syntax SENSe<cnum>:SWEep:GROups:COUNt?
Return Type Character

Overlapped? No
Default 1

SENSe<cnum>:SWEep:MODE <char>

(Read-Write) Sets the trigger mode for the specified channel.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<char> Trigger mode. Choose from:

 HOLD - channel will not trigger
 CONTinuous - channel triggers indefinitely
 GROups - channel accepts the number of triggers specified with
the last SENS:SWE:GRO:COUN <num>

Examples SENS:SWE:MODE CONT

 sense2:sweep:mode hold

Query Syntax SENSe<cnum>:SWEep:MODE?
Return Type Character

Overlapped? YES - SENS:SWE:MODE GROUPS (when INIT:CONT is ON)

 NO - HOLD and CONTinuous
Default CONTinuous

SENSe<cnum>:SWEep:POINts <num>

(Read-Write) Sets the number of data points for the measurement.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<num> Choose any number between 1 and 16001

Note: This command will accept MIN or MAX instead of a
numeric parameter. See SCPI Syntax for more information.

Examples SENS:SWE:POIN 51

416

 sense2:sweep:points max

Query Syntax SENSe<cnum>:SWEep:POINts?

Return Type Character

Overlapped? No
Default 201

SENSe<cnum>:SWEep:SRCPort <1 | 2>

(Read-Write) Sets the source port when making non S-parameter measurements. Has
no effect on S-parameter measurements.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<1 | 2> 1 - Source power comes out Port 1

 2 - Source power comes out Port 2

Examples SENS:SWE:SRCP 1

 sense2:sweep:srcport 2

Query Syntax SENSe<cnum>:SWEep:SRCPort?

Return Type Character

Overlapped? No
Default 1

SENSe<cnum>:SWEep:TIME <num>

(Read-Write) Sets the time the analyzer takes to complete one sweep.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<num> Sweep time in seconds. Choose a number between 0 and 86,400

(24hrs)
Note: This command will accept MIN or MAX instead of a
numeric parameter. See SCPI Syntax for more information.

Examples SENS:SWE:TIME 1ms

 sense2:sweep:time .001

Query Syntax SENSe<cnum>:SWEep:TIME?

Return Type Character

Overlapped? No
Default NA

SENSe<cnum>:SWEep:TIME:AUTO <ON | OFF>

(Read-Write) Turns the automatic sweep time function ON or OFF.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1

417

<ON | OFF> ON (or 1) - turns the automatic sweep time ON.
 OFF (or 0) - turns the automatic sweep time OFF.

Examples SENS:SWE:TIME:AUTO

 sense2:sweep:time:auto off

Query Syntax SENSe<cnum>:SWEep:TIME:AUTO?

Return Type Boolean (1 = ON, 0 = OFF)

Overlapped? No
Default ON

SENSe<cnum>:SWEep:TRIGger:POINt <ON | OFF>

(Read-Write) Specifies whether the specified channel will measure one point for each
trigger or all of the measurements in the channel. Setting any channel to POINt mode
will automatically set the TRIGger:SCOPe = CURRent.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<ON | OFF> ON (or 1) - Channel measures one data point per trigger.

 OFF (or 0) - All measurements in the channel made per trigger.

Examples SENS:SWE:TRIG:POIN ON

 sense2:sweep:trigger:point off

Query Syntax SENSe<cnum>:SWEep:TRIGger:POINt?
Return Type Boolean (1 = Point, 0 = Measurement)

Overlapped? No
Default 0 - Measurement

SENSe<cnum>:SWEep:TYPE <char>

(Read-Write) Sets the type of analyzer sweep mode.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<char> Choose from:

 LINear | LOGarithmic | POWer | CW | SEGMent
Note: SWEep TYPE cannot be set to SEGMent if there are no
segments turned ON. A segment is automatically turned ON when
the analyzer is started.

Examples SENS:SWE:TYPE LIN

 sense2:sweep:type segment

Query Syntax SENSe<cnum>:SWEep:TYPE?

Return Type Character

Overlapped? No
Default LINear

418

Source Commands

Controls the power delivered to the DUT.

• Click on a blue keyword to view the command details.
• See a List of all commands in this block.
• Learn about Power Settings

SOURce<cnum>:POWer<port>:ATTenuation <num>
(Read-Write) Sets the attenuation level for the selected channel. Sending this command turns
automatic attenuation control (SOUR:POW:ATT:AUTO) to OFF. If the ports are coupled,
changing the attenuation on one port will also change the attenuation on the other port. To turn
port coupling OFF use SOURce:POWer:COUPle OFF.
Note: Attenuation cannot be set with Sweep Type set to Power
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<port> Port number of the attenuator being set. Choose 1 or 2; If unspecified,

value is set to 1.
<num> Choose a number between 0 and 70 dB, in 10 dB steps.

 If a number other than these is entered, the analyzer will select the next
lower valid value. For example, if 19.9 is entered for <num> the analyzer
will switch in 10 dB attenuation.
Note: This command will accept MIN or MAX instead of a numeric
parameter. See SCPI Syntax for more information.

Examples SOUR:POW:ATT 10

 source2:power:attentuation maximum

Query Syntax SOURce<cnum>:POWer<port>:ATTenuation?
Return Type Character

Overlapped? No
Default 0

SOURce<cnum>:POWer<port>:ATTenuation:AUTO <ON | OFF>
(Read-Write) Turns automatic attenuation control ON or OFF. Setting an attenuation value
(using SOURce:POWer:ATTenuation <num>) sets AUTO OFF.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1.
<port> Port number of the attenuator being set. Choose 1 or 2; If unspecified,

419

value is set to 1.
<ON | OFF> ON (or 1) - turns coupling ON. The analyzer automatically selects the

appropriate attenuation level to meet the specified power level.
 OFF (or 0) - turns coupling OFF. Attenuation level must be set using
SOURce:POWer:ATTenuation <num>.

Examples SOUR:POW2:ATT:Auto On

 source2:power:
 attentuation:auto off

Query Syntax SOURce<cnum>:POWer:ATTenuation:Auto?
Return Type Boolean (1 = ON, 0 = OFF)

Overlapped? No
Default ON

SOURce<cnum>:POWer:CENTer <num>
(Read-Write) Sets the power sweep center power. Must also set:
 SENS:SWE:TYPE POWer and SOURce:POWer:SPAN <num>.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<num> Center power. Choose a number between -90 and 20 dBm

 (actual achievable leveled power depends on frequency)

Examples SOUR:POW:CENT -15

 source2:power:center -7

Query Syntax SOURce<cnum>:POWer:CENTer?
Return Type Character

Overlapped? No
Default 0 dBm

SOURce<cnum>:POWer:COUPle <ON | OFF>
(Read-Write) Turns Port Power Coupling ON or OFF.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<ON | OFF> ON (or 1) - turns coupling ON. Power level can be set individually for

each source port.
 OFF (or 0) - turns coupling OFF. The same power level is used for both
source ports.

Examples SOUR:POW:COUP ON

 source2:power:couple off

Query Syntax SOURce<cnum>:POWer:COUPle?
Return Type Boolean (1 = ON, 0 = OFF)

Overlapped? No
Default ON

SOURce<cnum>:POWer:DETector <INTernal | EXTernal>
(Read-Write) Sets the source leveling loop as Internal or External.
Parameters

420

<cnum> Any existing channel number. If unspecified, value is set to 1
<INTernal |
EXTernal>

INTernal - Internal leveling is applied to the source
 EXTernal - External leveling is applied to the source through a rear-
panel jack.

Examples SOUR:POW:DET INT

 source2:power:detector external

Query Syntax SOURce<cnum>:POWer:DETector?
Return Type Character

Overlapped? No
Default INTernal

SOURce<cnum>:POWer<port>[:LEVel][:IMMediate]
 [:AMPLitude] <num>
(Read-Write) Sets the RF power output level.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<port> Port number of the attenuator being set. Choose 1 or 2; If unspecified,

value is set to 1.
<num> Source power in dBm. Choose any value between -90 and +20 dBm

 Actual achievable leveled power depends on frequency.
Note: This command will accept MIN or MAX instead of a numeric
parameter. See SCPI Syntax for more information.

Examples SOUR:POW1 5DB

 source2:power:level
 :immediate:amplitude maximum

Query Syntax SOURce<cnum>:POWer[:LEVel][:IMMediate][:AMPLitude]?
Return Type Character

Overlapped? No
Default 0 dBm

SOURce<cnum>:POWer[:LEVel]:SLOPe <int>
(Read-Write) Sets the RF power slope value.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<int> Slope value in db/GHz. Choose any integer between -2 and 2

 (0 is no slope).

Examples SOUR:POW:SLOP 2

 source2:power:slope -2

Query Syntax SOURce<cnum>:POWer[:LEVel]:SLOPe?
Return Type Character

Overlapped? No
Default 0

SOURce<cnum>:POWer[:LEVel]:SLOPe:STATe <ON|OFF>
(Read-Write) Turns Power Slope ON or OFF.

421

Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<ON|OFF> ON (or 1) - turns slope ON.

 OFF (or 0) - turns slope OFF.

Examples SOUR:POW:SLOP:STAT ON

 source2:power:slope:state off

Query Syntax SOURce<cnum>:POWer[:LEVel]:SLOPe:STATe?
Return Type Boolean (1 = ON, 0 = OFF)

Overlapped? No
Default OFF

SOURce<cnum>:POWer:SPAN <num>
(Read-Write) Sets the power sweep span power. Must also set:
SENS:SWE:TYPE POWer and SOURce:POWer:CENTer <num>.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<num> Span power. Choose a number between:

 -90 and 20 dBm
 (actual achievable leveled power depends on frequency)

Examples SOUR:POW:SPAN -15

 source2:power:span -7

Query Syntax SOURce<cnum>:POWer:SPAN?
Return Type Character

Overlapped? No
Default 0 dBm

SOURce<cnum>:POWer:STARt <num>
(Read-Write) Sets the power sweep start power. Must also set
 SENS:SWE:TYPE POWer and SOURce:POWer:STOP <num>.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<num> Start power. Choose a number between -90 and +20 dBm

 (actual achievable leveled power depends on frequency)

Examples SOUR:POW:STAR -15

 source2:power:start -7

Query Syntax SOURce<cnum>:POWer:STARt?
Return Type Character

Overlapped? No
Default 0 dBm

SOURce<cnum>:POWer:STOP <num>
(Read-Write) Sets the power sweep stop power. Must also set:
 SENS:SWE:TYPE POWer and SOURce:POWer:START <num>.
Parameters

422

<cnum> Any existing channel number. If unspecified, value is set to 1
<num> Stop power. Choose a number between -90 and +20 dBm

 (actual achievable leveled power depends on frequency)

Examples SOUR:POW:STOP -15

 source2:power:stop -7

Query Syntax SOURce<cnum>:POWer:STOP?
Return Type Character

Overlapped? No
Default 0 dBm

Source:Power:Correction Commands

Controls the source power correction features of the analyzer.

• Click on a blue keyword to view the command details.
• See a List of all commands in this block.
• See an example program using these commands.
• See a template for creating your own Power Meter Driver
• Learn about Source Cal

Note: the SOURce:POWer:CORRection:COLLect:ACQuire command, used to step the PNA and
read a power meter, cannot be sent over the GPIB. Use one of the alternative methods described
in the command details.

SOURce<cnum>:POWer<port>:CORRection:COLLect:ABORt
(Write-only) Aborts a source power calibration sweep that is in progress.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<port> Port number to correct for source power. If unspecified, value is set to 1.

Examples SOUR:POW:CORR:COLL:ABOR

 source1:power2:correction:collect:abort

423

Query Syntax Not Applicable

Overlapped? No
Default Not Applicable

SOURce<cnum>:POWer<port>:CORRection:COLLect[:ACQuire] <char>
(Write-only) Initiates a source power cal acquisition sweep using the power sensor attached to
the specified channel (A or B) on the power meter.

Note: Never use GPIB to send this SCPI command to the PNA. This command requires the
PNA to take GPIB control. The PNA currently does not support pass control a technique
whereby GPIB control can be passed back and forth between two controllers.

Use one of the following methods to perform this command or its equivalent:
• SCPI programming of the PNA using a LAN Client interface (see example)
• Send SCPI commands through the COM interface using the SCPI String Parser object.

Directly control the Power Meter and PNA to step frequency; then acquire and store the Power
reading. (see example)
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<port> Port number to correct for source power. If unspecified, value is set to 1.
<char> Choose from:

ASENsor - Sensor on power meter channel A
BSENsor - Sensor on power meter channel B

Examples SOUR:POW:CORR:COLL ASEN

 source1:power2:correction:collect:acquire bsensor

Query Syntax Not Applicable

Overlapped? No
Default Not Applicable

SOURce<cnum>:POWer<port>:CORRection:COLLect:AVERage[:COUNt]
<num>
(Read-Write) Specifies how many power readings are taken at each frequency point
(averaging factor) during a source power cal acquisition sweep.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<port> Port number to correct for source power. If unspecified, value is set to 1.
<num> Number of readings per point. Choose any number between 1 and 100.

Examples SOUR:POW:CORR:COLL:AVER 2

 source1:power2:correction:collect:average:count 3

Query Syntax SOURce:POWer:CORRection:COLLect:AVERage[:COUNt]?
Return Type Character

Overlapped? No
Default 1

SOURce<cnum>:POWer:CORRection:COLLect:FCHeck[:STATe] <ON | OFF>
(Read-Write) Enables and disables frequency checking of source power cal acquisition

424

sweeps.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<ON|OFF> ON (1) turns source power cal frequency checking ON. A requested

acquisition will only succeed for those frequency points which fall within a
frequency range specified for the power sensor being used. An
acquisition will pause in mid-sweep if the frequency is about to exceed
the maximum frequency limit specified for that sensor. When the sweep
is paused in this manner, a sensor connected to the other channel input
of the power meter can be connected to the measurement port in place of
the previous sensor, and used to complete the sweep. However, the
maximum frequency specified for the second sensor would need to be
sufficient for the sweep to complete. Frequency limits are specified using
the commands
SOURce<cnum>:POWer:CORRection:COLLect:ASENsor[:FRANge] and
SOURce<cnum>:POWer:CORRection:COLLect:BSENsor[:FRANge].

OFF (0) - turns source power cal frequency checking OFF. An acquisition
will use just one power sensor for the entire sweep, regardless of
frequency.

Examples SOUR:POW:CORR:COLL:FCH ON

 source1:power2:correction:collect:fcheck:state off

Query Syntax SOURce:POWer:CORRection:COLLect:FCHeck[:STATe]?
Return Type Boolean (1 = ON, 0 = OFF)

Overlapped? No
Default OFF (0)

SOURce<cnum>:POWer<port>:CORRection:COLLect:METHod <char>
(Read-Write) Selects the source power calibration method. Currently, PMETer is the only
supported method. In general, test software should not omit use of this command as it may
eventually be required if other source power cal methods become supported.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<port> Port number to correct for source power. If unspecified, value is set to 1.
<char> Choose from:

NONE - No Cal method
PMETer - Power Meter

Examples SOUR:POW:CORR:COLL:METH PMET

 source1:power2:correction:collect:method pmeter

Query Syntax SOURce:POWer:CORRection:COLLect:METHod?
Return Type Character

Overlapped? No
Default NONE

SOURce<cnum>:POWer<port>:CORRection:COLLect:SAVE
(Write-only) Applies the array of correction values after a source power calibration sweep has
completed. The source power correction will then be active on the specified source port for
channel <cnum>. This command does NOT save the correction values.

425

Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<port> Port number to correct for source power. If unspecified, value is set to 1.

Examples SOUR:POW:CORR:COLL:SAVE

 source1:power2:correction:collect:save

Query Syntax Not Applicable

Overlapped? No
Default Not Applicable

SOURce<cnum>:POWer:CORRection:COLLect:<pmChan>SENsor[:FRANge]
<num1>,<num2>
(Read-Write) Specifies the frequency range over which the power sensors connected to the
specified channels (A and B) of the power meter can be used (minimum frequency, maximum
frequency). If the power meter has only a single channel, that channel is considered channel A.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<pmChan> Power Meter channel. Choose from:

A - Channel A
B - Channel B

<num1> Minimum frequency for the sensor. If a frequency unit is not specified, Hz
is assumed. No limits are placed on this value.

<num2> Maximum frequency for the sensor. If a frequency unit is not specified, Hz
is assumed. No limits are placed on this value.

Examples SOUR:POW:CORR:COLL:ASEN 100E3, 3E9

 source1:power2:correction:collect:bsensor:frange 10 MHz, 18 GHz

Query Syntax SOURce:POWer:CORRection:COLLect:ASENsor[:FRANge]?

SOURce:POWer:CORRection:COLLect:BSENsor[:FRANge]?
Return Type Character

Overlapped? No
Default 0,0

SOURce<cnum>:POWer:CORRection:COLLect:<pmChan>SENsor:RCFactor
<num>
(Read-Write)) Specifies the reference cal factor for the power sensor connected to channel A
or B of the power meter. If the power meter has only a single channel, that channel is
considered channel A.
Note: If the sensor connected to the specified channel of the power meter contains cal factors
in EPROM (such as the Agilent E-series power sensors), those will be the cal factors used
during the calibration sweep. The reference cal factor value associated with this command, and
any cal factors entered into the PNA for that sensor channel, will not be used.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<pmChan> Power Meter channel. Choose from:

A - Channel A
B - Channel B

<num> Reference cal factor in percent. Choose any number between 1 and 150.

426

Examples SOUR:POW:CORR:COLL:ASEN:RCF 98.7
 source1:power2:correction:collect:bsensor:rcfactor 105

Query Syntax SOURce:POWer:CORRection:COLLect:ASENsor:RCFactor?

SOURce:POWer:CORRection:COLLect:BSENsor:RCFactor?
Return Type Character

Overlapped? No
Default 100

SOURce<cnum>:POWer:CORRection:COLLect:TABLe:DATA <data>
(Read-Write) Read or write data into the selected table. If the selected table is a power sensor
table, the data is interpreted as cal factors in units of percent. If the loss table is selected, the
data is interpreted as loss in units of dB.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<data> Data to write into the selected table.

Examples SOURce:POWer:CORRection:COLLect:TABLe:DATA 0.12, 0.34, 0.56

Query Syntax SOURce<cnum>:POWer:CORRection:COLLect:TABLe:DATA?

If the selected table is currently empty, no data is returned.
Return Type Character - one number per table segment

Overlapped? No
Default Not Applicable

SOURce<cnum>:POWer:CORRection:COLLect:TABLe:FREQuency <data>
(Read-Write) Read or write frequency values for the selected table (cal factor table for a power
sensor, or the loss compensation table).
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<data> Frequency data to write into the selected table.

Examples SOURce:POWer:CORRection:COLLect:TABLe:FREQuency 10E6,

1.5E9, 9E9

Query Syntax SOURce<cnum>:POWer:CORRection:COLLect:TABLe:FREQuency?

If the selected table is currently empty, no data is returned.
Return Type Character - one number per table segment

Overlapped? No
Default Not Applicable

SOURce<cnum>:POWer:CORRection:COLLect:TABLe:LOSS[:STATe] <ON |
OFF>
(Read-Write) Indicates whether or not to adjust the power readings using the values in the loss
table during a source power cal sweep.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<ON|OFF> ON (or 1) - turns use of the loss table ON.

OFF (or 0) - turns use of the loss table OFF.

427

Examples SOUR:POW:CORR:COLL:TABL:LOSS ON
 source1:power2:correction:collect:table:loss:state off

Query Syntax SOURce:POWer:CORRection:COLLect:TABLe:LOSS[:STATe]?
Return Type Boolean (1 = ON, 0 = OFF)

Overlapped? No
Default OFF (0)

SOURce<cnum>:POWer:CORRection:COLLect:TABLe:POINts?
(Read-only) Returns the number of segments that are currently in the selected table.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1

Examples SOUR:POW:CORR:COLL:TABL:POIN?

 source1:power2:correction:collect:table:points?

Return Type Character

Overlapped? No
Default 0

SOURce<cnum>:POWer:CORRection:COLLect:TABLe[:SELect] <char>
(Read-Write) Selects which table (cal factor table for a power sensor, or the loss compensation
table) you want to write to or read from. Read or write using
SOURce:POWer:CORRection:COLLect:TABLe:FREQuency and
SOURce:POWer:CORRection:COLLect:TABLe:DATA
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<char> Choose from:

NONE - No table selected
ASENsor - Cal Factor table for Power Sensor A
BSENsor - Cal Factor table for Power Sensor B
LOSS - Loss compensation table

Examples SOUR:POW:CORR:COLL:TABL ASEN

 source1:power2:correction:collect:table:select bsensor

Query Syntax SOURce:POWer:CORRection:COLLect:TABLe[:SELect]?
Return Type Character

Overlapped? No
Default NONE

SOURce<cnum>:POWer<port>:CORRection:DATA <data>
(Read-Write) Writes and reads source power calibration data.
When querying source power calibration data, if no source power cal data exists for the
specified channel and source port, no data is returned.
If a change in the instrument state causes interpolation and/or extrapolation of the source
power cal, the correction data associated with this command correspond to the new instrument
state (interpolated and/or extrapolated data).
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1

428

<port> Port number to correct for source power. If unspecified, value is set to 1.
<data> Correction Data

Examples SOURce1:POWer2:CORRection:DATA 0.12, -0.34, 0.56

Query Syntax SOURce<cnum>:POWer<port>:CORRection:DATA?
Return Type Character - One number per trace point

Overlapped? No
Default Not Applicable

SOURce<cnum>:POWer<port>:CORRection:LEVel <num>
(Read-Write) Specifies the power level that is expected at the desired reference plane (DUT
input or output).
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<port> Port number to correct for source power. If unspecified, value is set to 1.
<num> Cal power level in dBm. Because this could potentially be at the output of

a device-under-test, no limits are placed on this value here. It is
realistically limited by the specifications of the device (power sensor) that
will be used for measuring the power. The power delivered to the PNA
receiver must never exceed PNA specifications for the receiver!

Examples SOUR:POW:CORR:LEV 10

 source1:power2:correction:level 0 dbm

Query Syntax SOURce:POWer:CORRection:LEVel?
Return Type Character

Overlapped? No
Default 0 dBm

SOURce<cnum>:POWer<port>:CORRection[:STATe] <ON|OFF>
(Read-Write) Enables and disables source power correction for the specified port on the
specified channel.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1
<port> Port number to correct for source power. If unspecified, value is set to 1.
<ON|OFF> ON (or 1) turns source power correction ON.

OFF (or 0) - turns source power correction OFF.

Examples SOUR:POW:CORR ON

 source1:power2:correction:state off

Query Syntax SOURce:POWer:CORRection[:STATe]?
Return Type Boolean (1 = ON, 0 = OFF)

Overlapped? No
Default OFF (0)

429

Status Register Commands

The status registers enable you to query the state of selected events that occur in the analyzer.

• Click on a blue keyword to view the command details.
• See a List of all commands in this block.
• Learn about Status Registers

Note: Any bit not shown in the registers is not used but may be reserved for future use.

Status Byte Register
Summarizes the states of the other registers and monitors the analyzer’s output queue. It also
generates service requests. The Enable register is called the Service Request Enable Register.
Commands Description
*CLS Clears ALL "event" registers and the SCPI Error / Event queue. The

corresponding ENABLE registers are unaffected.
*STB? Reads the value of the analyzer’s status byte. The byte remains after being read.

430

*SRE? Reads the current state of the Service Request Enable Register.
*SRE <num> Sets bits in the Service Request Enable register. The current setting of the SRE

register is stored in non-volatile memory. Use *SRE 0 to clear the enable.
<num> Combined value of the weights for bits to be set.

Bit Weight Description Bit is set to 1 when the following conditions exist:
2 4 Error / Event

queue Summary
(EAV)

the Error / Event queue is not empty. To read the the error
message, use SYST:ERR?

3 8 Questionable
Register
Summary

any enabled bit in the questionable event status register is
set to 1

4 16 Message
Available

the output queue is not empty

5 32 Standard Event
Register
Summary

any enabled bit in the standard event status register is set
to 1

6 64 Request Service any of the other bits in the status byte register is set to 1
(used to alert the controller of a service request within the
analyzer). This bit cannot be disabled.

7 128 Operation
Register
Summary

any enabled bit in the standard operation event status
register is set to 1

STATus:QUEStionable:<keyword>
Summarizes conditions that monitor the quality of measurement data.
<keyword> Example
:CONDition? STAT:QUES:COND?
:ENABle <bits> STAT:QUES:ENAB 1024
[:EVENt]? STAT:QUES?
:NTRansition
<bits>

STAT:QUES:NTR 1024

:PTRansition
<bits>

STAT:QUES:PTR 0

Bit Weight Description Bit is set to 1 when the following conditions exist:
9 512 Integrity Reg

summary
any enabled bit in the Integrity event register is set to 1

10 1024 Limit Registers
summary

any enabled bit in the Limit event registers is set to 1

11 2048 Define Registers
summary

any enabled bit in the Define event registers is set to 1

STATus:QUEStionable:INTegrity <keyword>
Summarizes conditions in the Measurement Integrity register.
<keyword> Example
:CONDition? STAT:QUES:INT:COND?
:ENABle <bits> STAT:QUES:INT:ENAB 1024
[:EVENt]? STAT:QUES:INT?
:NTRansition <bits> STAT:QUES:INT:NTR 1024
:PTRansition <bits> STAT:QUES:INT:PTR 0

Bit Weight Description Bit is set to 1 when the following conditions exist:
0 1 Measurement

Summary
any bit in the Measurement Integrity event register is set
to 1

2 2 Hardware
Summary

any bit in the Hardware event register is set to 1

431

STATus:QUEStionable:INTegrity:HARDware<keyword>
Monitors the status of hardware failures.
<keyword> Example
:CONDition? STAT:QUES:INT:HARD:COND?
:ENABle <bits> STAT:QUES:INT:HARD:ENAB 1024
[:EVENt]? STAT:QUES:INT:HARD?
:NTRansition <bits> STAT:QUES:INT:HARD:NTR 1024
:PTRansition <bits> STAT:QUES:INT:HARD:PTR 0

Bit Weight Description Bit is set to 1 when the following conditions exist:
1 2 Phase Unlock the source has lost phaselock, possibly caused by a

reference channel open or a hardware failure.
2 4 Unleveled the source power is unleveled. This could be caused by a

source set for more power than it can deliver at the tuned
frequency. Or it could be caused by a hardware failure.

3 8 Overpower too much power is detected at the input. This is from either
using an amplifier, or a hardware failure.

4 16 EE Write Failed an attempted write to the EEPROM has failed, possibly
caused by a hardware failure.

5 32 YIG Cal Failed the analyzer was unable to calibrate the YIG. Either the
phaselock has been lost or there has been a hardware
failure.

6 64 Ramp Cal Failed the analyzer was unable to calibrate the analog ramp
generator due to a possible hardware failure.

7 128 OverTemp the source temperature sensor exceeds the limit. It could
result from restricted airflow or a broken fan

STATus:QUEStionable:INTegrity:MEASurement<n> <keyword>
Monitors the lag between changing a channel settings and when the data is ready to query out.
When you change the channel state (start/stop freq, bandwidth, and so on), then the
questionable bit for that channel gets set. This indicates that your desired channel state does
not yet match the data you would get if querying a data trace. When the next complete sweep
has been taken (without aborting in the middle), and the data trace matches the channel state
that produced it, the bit is cleared for that channel.
<n> Measurement register number. Choose from 1 to 3
<keyword> Example
:CONDition? STAT:QUES:INT:MEAS1:COND?
:ENABle <bits> STAT:QUES:INT:MEAS2:ENAB 1024
[:EVENt]? STAT:QUES:INT:MEAS3?
:NTRansition <bits> STAT:QUES:INT:MEAS2:NTR 1024
:PTRansition <bits> STAT:QUES:INT:MEAS1:PTR 0

Measurement
Register <n>

Bit Weig
ht

1 2 3 Bit is set to 1 when the following conditions
exist:

0 1 1 Sum
mary
from
Meas
Reg
3

a setting change on this channel has occurred and
the data does not yet reflect that change.

1 2 2 15 29 a setting change on this channel has occurred and
the data does not yet reflect that change.

2 4 3 16 30 a setting change on this channel has occurred and
the data does not yet reflect that change.

432

3 8 4 17 31 a setting change on this channel has occurred and
the data does not yet reflect that change.

4 16 5 18 32 a setting change on this channel has occurred and
the data does not yet reflect that change.

5 32 6 19 a setting change on this channel has occurred and
the data does not yet reflect that change.

6 64 7 20 a setting change on this channel has occurred and
the data does not yet reflect that change.

7 128 8 21 a setting change on this channel has occurred and
the data does not yet reflect that change.

8 256 9 22 a setting change on this channel has occurred and
the data does not yet reflect that change.

9 512 10 23 a setting change on this channel has occurred and
the data does not yet reflect that change.

10 1024 11 24 a setting change on this channel has occurred and
the data does not yet reflect that change.

11 2048 12 25 a setting change on this channel has occurred and
the data does not yet reflect that change.

12 4096 13 26 a setting change on this channel has occurred and
the data does not yet reflect that change.

13 8192 14 27 a setting change on this channel has occurred and
the data does not yet reflect that change.

14 1638
4

Sum
mary
from
Meas
Reg
2

28 a setting change on this channel has occurred and
the data does not yet reflect that change.

STATus:QUEStionable:LIMit<n> <keyword>
Monitors and summarizes the status of limit line failures. When a trace fails, the representative bit is
set to 1. Bit 0 is used to summarize failures in the registers that follow. For example, Limit 3 register,
bit 0, summarizes the failures from registers 4 and 5.
 All enable bits are set to 1 by default. To find the measurement number, use Calc:Par:Mnum
<n> Limit register: Choose from 1 to 5.
<keyword> Example
:CONDition? STAT:QUES:LIM4:COND?
:ENABle <bits> STAT:QUES:LIM1:ENAB 1024
[:EVENt]? STAT:QUES:LIM3?
:NTRansition <bits> STAT:QUES:LIM2:NTR 1024
:NTRansition? STAT:QUES:LIM1:NTR?
:PTRansition <bits> STAT:QUES:LIM5:PTR 0
:PTRansition? STAT:QUES:LIM1:PTR?

Limit Register <n>

Bit Weig
ht

1 2 3 4 5 Bit is set to 1 when the following
conditions exist:

0 1 2, 3,
4, 5

3, 4,
5

4, 5 5 Summary - Any point from these registers
fails

Trace Numbers
1 2 1 15 29 43 57 any point on trace fails the limit test
2 4 2 16 30 44 58 any point on trace fails the limit test
3 8 3 17 31 45 59 any point on trace fails the limit test
4 16 4 18 32 46 60 any point on trace fails the limit test
5 32 5 19 33 47 61 any point on trace fails the limit test

433

6 64 6 20 34 48 62 any point on trace fails the limit test
7 128 7 21 35 49 63 any point on trace fails the limit test
8 256 8 22 36 50 64 any point on trace fails the limit test
9 512 9 23 37 51 any point on trace fails the limit test
10 1024 10 24 38 52 any point on trace fails the limit test
11 2048 11 25 39 53 any point on trace fails the limit test
12 4096 12 26 40 54 any point on trace fails the limit test
13 8192 13 27 41 55 any point on trace fails the limit test
14 1638

4
14 28 42 56 any point on trace fails the limit test

STATus:QUEStionable:DEFine<keyword>
Summarizes conditions in the Questionable:Define:User<1|2|3> event registers.
<keyword> Example
:CONDition? STAT:QUES:DEF:COND?
:ENABle <bits> STAT:QUES:DEF:ENAB 1024
[:EVENt]? STAT:QUES:DEF?
:NTRansition <bits> STAT:QUES:DEF:NTR 1024
:PTRansition <bits> STAT:QUES:DEF:PTR 0

Bit Weight Description Bit is set to 1 when the following conditions exist:
1 2 USER1 any bit in the USER1 event register is set to 1
2 4 USER2 any bit in the USER2 event register is set to 1
3 8 USER3 any bit in the USER3 event register is set to 1

STATus:QUEStionable:DEFine:USER<1|2|3><keyword>
Monitors conditions that you define and map in any of the three QUES:DEF:USER event
registers.
<keyword> Example
:ENABle <bits> STAT:QUES:DEF:USER1:ENABle 1024
[:EVENt]? STAT:QUES:DEF:USER1?
:MAP <bit>,<error> STAT:QUES:DEF:USER1:MAP 0,-113 ’when error -113

occurs, bit 0 in USER1 will set to 1.

Bit Weight Description Bit is set to 1 when the following conditions exist:
0 1 for user user defined
1 2 for user user defined
2 4 for user user defined
3 8 for user user defined
4 16 for user user defined
5 32 for user user defined
6 64 for user user defined
7 128 for user user defined
8 256 for user user defined
9 512 for user user defined
10 1024 for user user defined
11 2048 for user user defined
12 4096 for user user defined
13 8192 for user user defined
14 16384 for user user defined

Standard Event Status Register
Monitors "standard" events that occur in the analyzer. This register can only be cleared by:

• a Clear Command (*CLS).
• reading the Standard Enable Status Register (*ESE?).

434

a power-on transition. The analyzer clears the register and then records any transitions that
occur, including setting the Power On bit (7).
Commands Description
*ESE? Reads the settings of the standard event ENABLE register.
*ESE <bits> Sets bits in the standard event ENABLE register. The current setting is saved

in non-volatile memory.
<bits> The sum of weighted bits in the register. Use *ESE 0 to clear the
enable register.

*ESR? Reads and clears the EVENT settings in the Standard Event Status register.
*OPC Sets bit 0 when the overlapped command is complete. (see Understanding

Command Synchronization / OPC).
*OPC? Operation complete query - read the Operation Complete bit (0).

Bit Weight Description Bit is set to 1 when the following conditions exist:
0 1 Operation

Complete
the two following events occur in order:

1. the *OPC command is sent to the analyzer
the analyzer completes all pending overlapped commands

1 NA Request
Control

Not Supported - the analyzer application is not configured to
control GPIB operation

2 4 Query Error a query error is detected indicating:
 - an attempt to read data from the output queue when no data
was present OR
 - data in the output queue was lost, as in an overflow

4 16 Execution
Error

an execution error is detected indicating:
 - a <PROGRAM DATA> element was outside the legal range or
inconsistent with the operation of the analyzer OR
 - the analyzer could not execute a valid command due to some
internal condition

5 32 Command
Error

a command error is detected indicating that the analyzer
received a command that:

• did not follow proper syntax
• was misspelled

was an optional command it does not implement
7 128 Power ON Power to the analyzer has been turned OFF and then ON since

the last time this register was read.

STATus:OPERation<keyword>
Summarizes conditions in the Averaging and Operation:Define:User<1|2|3> event registers.
<keyword> Example
:CONDition? STAT:OPER:COND?
:ENABle <bits> STAT:OPER:ENAB 1024
[:EVENt]? STAT:OPER?
:NTRansition <bits> STAT:OPER:NTR 1024
:PTRansition <bits> STAT:OPER:PTR 0

Bit Weight Description Bit is set to 1 when the following conditions exist:
8 256 Averaging

summary
either enabled bit in the Averaging summary event register is
set to 1

9 512 User
Defined
summary

10 1024 Device
summary

either enabled bit in the Device summary event register is set to
1

STATus:OPERation:AVERaging<n> <keyword>
Monitors and summarizes the status of Averaging on traces 1 to 64. When averaging for a

435

trace is complete, the representative bit is set to 1. Bit 0 is used to summarize the status in the
registers that follow. For example, Average 3 register, bit 0, summarizes the status from
registers 4 and 5. All enable bits are set to 1 by default. To find the measurement number, use
Calc:Par:Mnum.
<n> Averaging Register. Choose from 1 to 5
<keyword> Example
:CONDition? STAT:OPER:AVER1:COND?
:ENABle <bits> STAT:OPER:AVER1:ENAB 1024
[:EVENt]? STAT:OPER:AVER1?
:NTRansition <bits> STAT:OPER:AVER1:NTR 1024
:PTRansition <bits> STAT:OPER:AVER1:PTR 0

Averaging Register <n>

Bit Weig
ht

1 2 3 4 5 Bit is set to 1 when the following
conditions exist:

0 1 2, 3,
4, 5

3, 4,
5

4, 5 5 any enabled bit in these registers is set to
1(Summary Bit)

Trace Numbers
1 2 1 15 29 43 57 Averaging on this trace is complete
2 4 2 16 30 44 58 Averaging on this trace is complete
3 8 3 17 31 45 59 Averaging on this trace is complete
4 16 4 18 32 46 60 Averaging on this trace is complete
5 32 5 19 33 47 61 Averaging on this trace is complete
6 64 6 20 34 48 62 Averaging on this trace is complete
7 128 7 21 35 49 63 Averaging on this trace is complete
8 256 8 22 36 50 64 Averaging on this trace is complete
9 512 9 23 37 51 Averaging on this trace is complete
10 1024 10 24 38 52 Averaging on this trace is complete
11 2048 11 25 39 53 Averaging on this trace is complete
12 4096 12 26 40 54 Averaging on this trace is complete
13 8192 13 27 41 55 Averaging on this trace is complete
14 1638

4
14 28 42 56 Averaging on this trace is complete

STATus:OPERation:DEFine<keyword>
Summarizes conditions in the OPERation:Define:User<1|2|3> event registers.
<keyword> Example
:CONDition? STAT:OPER:DEF:COND?
:ENABle <bits> STAT:OPER:DEF:ENAB 12
[:EVENt]? STAT:OPER:DEF?
:NTRansition <bits> STAT:OPER:DEF:NTR 12
:PTRansition <bits> STAT:OPER:DEF:PTR 0

Bit Weight Description Bit is set to 1 when the following conditions exist:
1 2 USER1 any bit in the USER1 event register is set to 1
2 4 USER2 any bit in the USER2 event register is set to 1
3 8 USER3 any bit in the USER3 event register is set to 1

STATus:OPERation:DEFine:USER<1|2|3><keyword>
Monitors conditions that you define and map in any of the three OPER:DEF:USER event
registers.
<keyword> Example
:ENABle <bits> STAT:OPER:DEF:USER1:ENAB 1024
[:EVENt]? STAT:OPER:DEF:USER1?

436

:MAP <bit>,<error> STAT:OPER:DEF:USER1:MAP 0,-113 ’when error -113
occurs, bit 0 in USER1 will set to 1.

Bit Weight Description Bit is set to 1 when the following conditions exist:
0 1 for user user defined
1 2 for user user defined
2 4 for user user defined
3 8 for user user defined
4 16 for user user defined
5 32 for user user defined
6 64 for user user defined
7 128 for user user defined
8 256 for user user defined
9 512 for user user defined
10 1024 for user user defined
11 2048 for user user defined
12 4096 for user user defined
13 8192 for user user defined
14 16384 for user user defined

STATus:OPERation:DEVice<keyword>
Summarizes conditions in the OPERation:DEVice event registers.
<keyword> Example
:CONDition? STAT:OPER:DEV:COND?
:ENABle <bits> STAT:OPER:DEV:ENAB 16
[:EVENt]? STAT:OPER:DEV?
:NTRansition <bits> STAT:OPER:DEV:NTR 16
:PTRansition <bits> STAT:OPER:DEV:PTR 0

Bit Weight Description Bit is set to 1 when the following conditions exist:
0 1 Unused
1 2 Unused
2 4 Unused
3 8 Unused
4 16 Sweep Completed When sweep is complete
5 32 Unused
6 64 Unused
7 128 Unused
8 256 Unused
9 512 Unused
10 1024 Unused
11 2048 Unused
12 4096 Unused
13 8192 Unused
14 16384 Unused

Status Command Keywords

437

The following keywords can be appended to the node or nodes that represent the Status register
you want to control.
� :CONDition?

� :ENABle

� :ENABle?

� :EVENt?

� :MAP

� :NTRansition

� :PTRansition
Learn about Status Registers

:CONDition?
Monitors the conditions as they occur REAL TIME. That is, a condition may occur, and then clear
before the condition is read. Reading this register returns a 16-bit decimal weighted number.

:ENABle <bit>
Enables register bits that will monitored using the service request (SRQ) method. (To use the
direct read method, you do not have to enable the bit.)
Default value for STATus:QUEStionable:ENABle and STATus:OPERation:ENABle is 0: No
bits enabled.
Default value for all other registers :ENABle <bits> is 32767; ALL BITS ENABLED.
Therefore it is ONLY necessary to send the ENABle keyword if you want to DISABLE some
conditions. For example, to enable ONLY Trace1 (bit 2) of the LIMIT1 register (disable all other
traces) , send: STATus:QUEStionable:LIMit1:ENABle 4

:ENABle?
Read the enable register to verify the bits that you enabled. Returns a 16 bit weighted sum of the
bits that are enabled.

[:EVENt]?
Query only - This is the Default keyword for most registers. Use it to determine if a condition has
occured. These bits remain set until they are read or otherwise cleared.

:MAP <bit>,<error>
Associates a bit is the User register with an error number. For example
STATus:QUEStionable:DEFine:USER2:MAP 0,-113
0 is the bit that will be set
-113 is the error
When error -113 "Undefined Header" occurs, bit 0 in the USER2 register will be set to 1.

:NTRansition <bits>
Write-Read - Negative Transition register bits set the condition to be set on the Negative going
(True to False) transition. Use this register if you are only interested in a condition changing from
True to False.

:NTRansition?
queries the register to verify that you set a negative transition.

438

:PTRansition <bits>
Write-Read - Positive Transition register bits set the condition to be set on the False to True
transition. Use this register if you are only interested in the change of a condition from False to
True.

:PTRansition?
Queries the register to verify that you set a positive transition.

System Commands

• Click on a blue keyword to view the command details.
• See a List of all commands in this block.
• Learn about Preset

SYSTem:COMMunicate:GPIB:PMETer:ADDRess <num>
(Read-Write) Specifies the GPIB address of the power meter to be used in a source power
calibration.
Parameters
<num> GPIB address of the power meter. Choose any integer between 0 and 30.

Examples SYST:COMM:GPIB:PMET:ADDR 13

system:communicate:gpib:pmeter:address 14

Query Syntax SYSTem:COMMunicate:GPIB:PMETer:ADDRess?
Return Type Character

Overlapped? No
Default 13

SYSTem:CORRection:WIZard <char>
(Write-only) Launches either the Calibration Wizard or the Version 2 Calibration Kit File
Manager dialog box.
Parameters
<char> Choose from:

MAIN - Launches the Calibration Wizard
CKIT - Launches the Version 2 Calibration Kit File Manager dialog box.
Both display on the PNA screen.

439

Examples SYST:CORR:WIZ MAIN

 system:correction:wizard ckit

Query Syntax Not Applicable?

Overlapped? No
Default Not Applicable

SYSTem:ERRor?
(Read-only) Returns the next error in the error queue. Each time the analyzer detects an error,
it places a message in the error queue. When the SYSTEM:ERROR? query is sent, one
message is moved from the error queue to the output queue so it can be read by the controller.
Error messages are delivered to the output queue in the order they were received. The error
queue is cleared when any of the following conditions occur:

• When the analyzer is switched ON.
• When the *CLS command is sent to the analyzer.
• When all of the errors are read.

If the error queue overflows, the last error is replaced with a "Queue Overflow" error.
The oldest errors remain in the queue and the most recent error is discarded.
Examples SYST:ERR?

 system:error?

Overlapped? No
Default Not applicable

SYSTem:ERRor:COUNt?
(Read-only) Returns the number of errors in the error queue.Use SYST:ERR? to read an error.
Examples SYST:ERR:COUN?

 system:error:count?

Overlapped? No
Default Not applicable

SYSTem:PRESet
(Write-only) Deletes all traces, measurements, and windows. In addition, resets the analyzer to
factory defined default settings and creates a S11 measurement named "CH1_S11_1". For a
list of default settings, see Default.
If the PNA display is disabled with DISP:ENAB OFF then SYST:PRES will NOT enable the
display.
Examples SYST:PRES

 system:preset

Overlapped? No
Default Not applicable

440

SYSTem:MACRo:COPY:CHANnel<cnum>[:TO] <num>
(Write-only) Sets up channel <num> as a copy of channel <cnum>.
Parameters
<cnum> Any existing channel number. If unspecified, value is set to 1.
<num> Number of the channel which is to become a copy of channel <cnum>.

Examples SYST:MACR:COPY:CHAN1 2

system:macro:copy:channel2:to 3

Query Syntax Not Applicable

Overlapped? No
Default Not Applicable

SYSTem:FPReset
(Write-only) Deletes all traces, measurements, and windows. The screen goes blank. This
command is used in the factory during instrument programming.
Examples SYST:FPR

 system:fpreset

Overlapped? No
Default Not applicable

Trigger Commands

Starts or ends a measurement sequence. These commands are an important part of
synchronizing measurements.

• Click on a blue keyword to view the command details.
• See a List of all commands in this block.
• Learn about Triggering

TRIGger:DELay <num>
(Read-Write) Sets and reads the trigger delay. This delay is only applied while in External
Trigger mode. After an external trigger is applied, the start of the sweep is held off to for an
amount of time equal to the delay setting plus any inherent latency.
Parameters
<num> Float. Range of delay, from 0 to 1 second.

Examples TRIG:DEL .0003

441

Sets the trigger delay to 300 microseconds. The sweep will not start until
approximately 300 microseconds after an external trigger is applied.

Query Syntax TRIGger:DELay?
Return Type float num

Overlapped? No
Default 0

TRIGger[:SEQuence]:DELay <num>
(Read-Write) Sets and reads the trigger delay. This delay is only applied while in External
Trigger mode. After an external trigger is applied, the start of the sweep is delayed for the
specified delay value plus any inherent latency.
Parameters
<num> Delay value in seconds. Range from 0 to 1 second.

Examples TRIG:DEL 1e-3

 trigger:sequence:delay .003

Query Syntax TRIGger[:SEQuence]:DELay?
Return Type Character

Overlapped? No
Default 0

TRIGger[:SEQuence]:LEVel <char>
(Read-Write) Triggers either on a High or Low level trigger signal. (There is currently no
positive or negative edge triggering.) This setting only has an effect when TRIG:SOURce
EXTernal is selected.
Parameters
<char> Choose from:

 HIGH - analyzer triggers on TTL High
 LOW - analyzer triggers on TTL Low

Examples TRIG:LEV HIGH

 trigger:sequence:level low

Query Syntax TRIGger[:SEQuence]:LEVel?
Return Type Character

Overlapped? No
Default LOW

TRIGger[:SEQuence]:SCOPe <char>
(Read-Write) Specifies whether triggers are applied to all channels or the current channel.
Parameters
<char> Choose from:

 ALL - triggers all channels. Also sets SENS:SWEep:TRIG:POINt OFF
on ALL channels.
CURRent - trigger only one channel at a time. With each trigger signal,

442

the channel is incremented to the next triggerable channel.

Examples TRIG:SCOP ALL

 trigger:sequence:scope current

Query Syntax TRIGger[:SEQuence]:SCOPe?
Return Type Character

Overlapped? No
Default ALL

TRIGger[:SEQuence]:SOURce <char>
(Read-Write) Sets the source of the sweep trigger signal. This command is a super-set of
INITiate:CONTinuous, which can NOT set the source to External.
Parameters
<char> Choose from:

 EXTernal - external (rear panel) source
 IMMediate - internal source sends continuous trigger signals
 MANual - sends one trigger signal when manually triggered from the
front panel or INIT:IMM is sent.

Examples TRIG:SOUR EXT

 trigger:sequence:source immediate

Query Syntax TRIGger[:SEQuence]:SOURce?
Return Type Character

Overlapped? No
Default IMMediate

SCPI Examples
SCPI Example Programs

� Catalog Measurements

� Create a Measurement

� Setup Sweep Parameters

� Setup the Display

� Perform a Calibration

� Perform a Guided Cal

� Perform a Source Power Cal

� Perform a Sliding Load Cal

� Perform an ECAL Calibration

� Perform an ECAL Confidence Check

� Getting and Putting Data

� Establish a VISA Session

443

� Status Reporting

� Modify a Calibration Kit

� GPIB using Visual C++

� Create a Custom Power Meter Driver

� PNA as Controller and Talker/Listener

Catalog Measurements using SCPI

This Visual Basic Program does the following:
• Catalogs the currently defined measurements, windows, and traces
• Selects a measurement for further definition
• Adds a Title to the window

To run this program, you need:
• An established GPIB interface connection

See Other SCPI Example Programs

Dim Meas as String
 Dim Win as String
 Dim Trace as String

 ’Read the current measurements in Channel 1
 GPIB.Write "CALCulate1:PARameter:CATalog?"
 Meas = GPIB.Read
 MsgBox ("Ch1 Measurments: " & Meas)

 ’Read the current windows
 GPIB.Write "DISPlay:CATalog?"
 Win = GPIB.Read
 MsgBox ("Windows: " & Win)

 ’Read current traces in window 1
 GPIB.Write "DISPlay:WINDow1:CATalog?"
 Trace = GPIB.Read
 MsgBox ("Traces in Window1: " & Win)

Create a Measurement using SCPI

This Visual Basic program creates a new S21 measurement and displays it on the display. Use
the links to see the command details.
To run this program, you need:

• An established GPIB interface connection
 See Other SCPI Example Programs

’Preset the analyzer
 GPIB.Write "SYSTem:PReset"

 ’ Turn on window 1 - if new, creates it

444

 GPIB.Write "DISPlay:WINDow1:STATE ON"

 ’Define a measurement name, parameter
 GPIB.Write "CALCulate:PARameter:DEFine ’MyMeas’,S21"

 ’Associate ("FEED") the measurement name (’MyMeas’) to WINDow (1), and
give the new TRACe a number (1).
 GPIB.Write "DISPlay:WINDow1:TRACe1:FEED ’MyMeas’"

Create a Custom Power Meter Driver

Note: This topic requires that you have a working knowledge of Visual Basic.

This topic will help you create your own power meter driver for use with Source Power Calibration
on the PNA. If you are using one of the following Power Meters to perform a Source Power
Calibration, you do NOT need to create your own driver:

E4416A, E4417A, E4418A/B, E4419A/B, 437B, 438A, EPM-441A, EPM-442A
Your Power Meter driver will be created from a template written in Visual Basic using VISA over
the GPIB bus.

Note: This procedure applies to Visual Basic 6.0. Applicability to Visual Basic .NET has not yet
been investigated.

� Prepare Template Files

� Modify Template Files

� Compile, Copy, and Register, Your New Driver

� Test Your new Driver

Other SCPI Example Programs

Prepare Template Files
1. Copy all the files from the PNA hard drive C:\Program Files\Agilent\Network

Analyzer\Automation\Power Meter Driver Template folder, to a folder on your development PC.
2. In Visual Basic click File, then Open Project…, find MyPowerMeter.vbp (a file you copied from the

PNA). Click Open. This is a VB ActiveX EXE template, which you will fill in to become your driver.
3. Click Project, then MyPowerMeter Properties. Click the General tab.
4. Overwrite the Project Name with a name of your own choosing. This will be the name of your

driver’s type library (also the default name of your exe).

Note If the name of your exe does not match the VB Project Name with which it was compiled,
registration of the exe on the PNA will not succeed.

5. Set the Project Description. After building your driver if you wish to test it using VB, this is the string
that will show up in the VB References list of your test project, and also in the lower pane of the VB
Object Browser.

6. Set the Thread Pool size to 1 thread.
7. Click OK to close the project properties dialog.
8. From the VB Project menu, click References… Ensure that Agilent PNA Power Meter 1.0 Type

Library and VISA Library are checked. Click OK.

Note: Agilent’s implementation of VISA is installed as part of the Agilent I/O Libraries on the
PNA. For help on VISA, go to the Windows Start button on your PNA, select Programs, Agilent
IO Libraries, VISA Help.

445

Modify Template Files
From Visual Basic View menu click Project Explorer. Expand the Modules and Class Modules
folders. Ensure there is one module (WinAPI) and one class module (PowerMeter).
Let’s look at the WinAPI module first.

1. In the Project Explorer window, click WinAPI.
2. From the View menu click Code.

There is only one line of code you should need to modify in this module: the value of the string
constant named sIDSEARCH. The comments preceding the declaration of that string describe
how to change it. The rest of this module contains functions which will use the Microsoft
Windows API to insure proper registration of your driver on the PNA. If you know of other
Windows API functions you feel might be helpful to call from within your PowerMeter class
module (to help in formatting data, for example), this module would be the place to declare them.
Now let’s look at the class module.

1. In the Project Explorer window, click PowerMeter.
2. From the View menu click Properties Window. The Instancing property must be set to MultiUse.

This allows other applications to create objects from this class, such that one instance of your driver
EXE can supply more than one such object at a time.

3. From the View menu click Code.
Do NOT modify the Interfaces to IPowerMeter subroutines and functions. PNA source power cal
expects to find these interfaces as they are currently defined.
The only members that you need to supply code to are those containing “Your code here”
comments.
In addition, comments have been provided at the beginning of each member to describe the
information that member needs to be read from or written to the power meter.
To get an idea of how communicate with the power meter using the VISA functions viWrite and
viRead, examine the code which has been implemented for you in IPowerMeter_Connect,
IPowerMeter_QueryMeter, and IPowerMeter_WriteMeter.

Compile, Copy, and Register Your New Driver
When your driver is ready to run, you will first need to compile it into an EXE.
From the File menu select Make exe.
After compiling, the following will instruct VB to use the same ID (GUID) every time you re-
compile your project.

1. From the Project menu, click PowerMeter Properties.
2. On the Component tab, select Binary Compatibility and click ...
3. Browse to and select your project EXE. Click Open.
4. Click OK to close Project Properties.
5. Save your project.
6. Copy your driver EXE file to a folder on your PNA (do NOT use C:\Program Files\Agilent\Network

Analyzer\Automation\Power Meter Driver Template folder).
7. Run the EXE file. A message box will pop up reporting whether or not registration was successful.

If not successful, it will make a suggestion on what to fix.
When your driver is properly registered, PNA Source Power Cal should be able to associate it
with the ID string of your power meter.

Test Your Power Meter Driver
We have also provided a Visual Basic project to test your new Power Meter driver. This project
individually calls every IPowerMeter method and property in your driver to verify that it performs
correctly. Before running the test your PC and PNA must be configured to communicate using
DCOM.

1. Connect your PC and the PNA to LAN.
2. Add your PC logon to the PNA. Both logons and password must match to communicate using

DCOM. See Additional PNA users.

446

3. Configure your driver using DCOM Config on the PNA. This will give you permission to launch and
access the driver. See Configure for COM-DCOM Programming.

Modify the Test Project
1. In Visual Basic click File, then Open Project…, find MyPowerMeterTest.vbp (a file you copied

from the PNA). Click Open.
2. From the Project menu, click References… From the list, find and check your new Power Meter

Driver. (It should have been registered on your PC when you successfully made your driver EXE.)
Click OK.

3. From the View menu click Code.
4. Modify the CreateObject line as follows:

 Replace MyPowerMeter with the Project Name that you chose for your driver
 Replace MyPNA with the Computer Name of your PNA.
 For example:
Set PowerMeterObj = CreateObject("AcmeBrand.PowerMeter", "AGILENT-
PNA123")

(This assumes that you kept PowerMeter as class module name in your driver.)

Run the Test Project
Ensure your power meter is connected to the PNA with a GPIB cable.
Put the PNA in system controller mode:

1. From the PNA System menu point to Configure then click SICL/GPIB.
2. In the GPIB box click System Controller.

Run the test project. If there are no errors, the driver is created successfully. If there are errors,
try to figure out what went wrong and fix it. Then re-compile, re-copy the .exe to the PNA, and re-
run the test. You should not need to re-register the driver or re-modify the test program.

ECALConfidence Check using SCPI

This Visual Basic program performs a complete ECAL confidence check.
To run this program, you need:

• An established GPIB interface connection
• Agilent’s VISA or National Instrument’s VISA installed on your PC
• The module visa32.bas added to your VB project.
• A form with two buttons: cmdRun and cmdQuit
• A calibrated S11 1-port or N-port measurement active on Channel 1
• Window 1 is visible

 See Other SCPI Example Programs

’Session to VISA Default Resource Manager
Private defRM As Long
’Session to PNA
Private viPNA As Long
’VISA function status return code
Private status As Long

Private Sub Form_Load()
 defRM = 0
End Sub

Private Sub cmdRun_Click()
’String to receive data from the PNA
Dim strReply As String * 200

447

’ Open the VISA default resource manager
status = viOpenDefaultRM(defRM)
If (status < VI_SUCCESS) Then HandleVISAError

’ Open a VISA session (viPNA) to the PNA at GPIB address 16.
status = viOpen(defRM, "GPIB0::16::INSTR", 0, 0, viPNA)
If (status < VI_SUCCESS) Then HandleVISAError

’ Need to set the VISA timeout value to give all our GPIB Reads
’ sufficient time to complete before a timeout error occurs.
’ For this example, let’s try setting the limit to
’ 10000 milliseconds (10 seconds).
status = viSetAttribute(viPNA, VI_ATTR_TMO_VALUE, 10000)
If (status < VI_SUCCESS) Then HandleVISAError

’ Get the catalog of all the measurements currently on Channel 1.
status = myGPIBWrite(viPNA, "CALC1:PAR:CAT?")
If (status < VI_SUCCESS) Then HandleVISAError
status = myGPIBRead(viPNA, strReply)
If (status < VI_SUCCESS) Then HandleVISAError

’ If an S11 measurement named "MY_S11" doesn’t already exist,
’ then create it.
If InStr(strReply, "MY_S11") = 0 Then
 status = myGPIBWrite(viPNA, "CALC1:PAR:DEF MY_S11,S11")
 If (status < VI_SUCCESS) Then HandleVISAError
End If
strReply = ""

’ Get the catalog of all the trace numbers currently active
’ in Window 1.
status = myGPIBWrite(viPNA, "DISP:WIND1:CAT?")
If (status < VI_SUCCESS) Then HandleVISAError
status = myGPIBRead(viPNA, strReply)
If (status < VI_SUCCESS) Then HandleVISAError

’ If a trace number 4 already exists in Window 1, then this
’ will remove it.
If InStr(strReply, "4") > 0 Then
 status = myGPIBWrite(viPNA, "DISP:WIND1:TRAC4:DEL")
 If (status < VI_SUCCESS) Then HandleVISAError
End If

’ Set trace number 4 to MY_S11.
status = myGPIBWrite(viPNA, "DISP:WIND1:TRAC4:FEED MY_S11")
If (status < VI_SUCCESS) Then HandleVISAError

’ Set up trace view so we are viewing only the data trace.
status = myGPIBWrite(viPNA, "DISP:WIND1:TRAC4 ON")
If (status < VI_SUCCESS) Then HandleVISAError
status = myGPIBWrite(viPNA, "DISP:WIND1:TRAC4:MEM OFF")
If (status < VI_SUCCESS) Then HandleVISAError

’ Select MY_S11 as the measurement to be used for the
’ Confidence Check.
status = myGPIBWrite(viPNA, "SENS1:CORR:CCH:PAR MY_S11")
If (status < VI_SUCCESS) Then HandleVISAError

’ Acquire the S11 confidence check data from ECal Module A

448

’ into the memory buffer (asking for an OPC reply when it’s done).
status = myGPIBWrite(viPNA, "SENS1:CORR:CCH:ACQ ECALA;*OPC?")
If (status < VI_SUCCESS) Then HandleVISAError

’ The PNA sends an OPC reply ("+1") when the confidence data
’ acquisition into memory is complete, so this Read is waiting on
’ the reply until it is received.
status = myGPIBRead(viPNA, strReply)
If (status < VI_SUCCESS) Then HandleVISAError

’ Turn on trace math so the trace shows data divided by memory.
’ You can be confident the S11 calibration is reasonably good if
’ the displayed trace varies no more than a few tenths of a dB
’ from 0 dB across the entire span.
status = myGPIBWrite(viPNA, "CALC1:MATH:FUNC DIV")
If (status < VI_SUCCESS) Then HandleVISAError
End Sub

Private Sub cmdQuit_Click()
’ Turn off trace math
status = myGPIBWrite(viPNA, "CALC1:MATH:FUNC NORM")
If (status < VI_SUCCESS) Then HandleVISAError

’ Conclude the confidence check to set the ECal module
’ back to it’s idle state.
status = myGPIBWrite(viPNA, "SENS1:CORR:CCH:DONE")
If (status < VI_SUCCESS) Then HandleVISAError

’ Close the resource manager session (which also closes
’ the session to the PNA).
If defRM <> 0 Then Call viClose(defRM)

’ End the program
End
End Sub

Private Function myGPIBWrite(ByVal viHandle As Long, ByVal strOut As
String) As Long
’ The "+ Chr$(10)" appends an ASCII linefeed character to the output,
for
’ terminating the write transaction.
myGPIBWrite = viVPrintf(viHandle, strOut + Chr$(10), 0)
End Function

Private Function myGPIBRead(ByVal viHandle As Long, strIn As String) As
Long
myGPIBRead = viVScanf(viHandle, "%t", strIn)
End Function

Sub HandleVISAError()
Dim strVisaErr As String * 200
Call viStatusDesc(defRM, status, strVisaErr)
MsgBox "*** Error : " + strVisaErr, vbExclamation
End
End Sub

ECALibrate using SCPI

The following program does an Electronic Calibration using an Agilent ECAL module. These
commands do the following:

449

• Acquire the standards
• Move the error terms back into the analyzer
• Enable the calibration

Note: A separate :SENS:CORR:COLL:SAVE is not needed.

To run this program, you need:
• An established GPIB interface connection

 See Other SCPI Example Programs

Private Sub Command5_Click()
 ’Turn off continuous sweep
 GPIB.Write "INITiate:CONTinuous OFF"

 ’ECal full 1 port and 2 port
 ’This program assumes you have already set up the analyzer for an S11
measurement over the frequency range, power, etc. that you want.

 ’Select the Ecal "Kit"
 GPIB.Write "SENSe:CORRection:COLLect:CKIT 99"

 ’Choose a Calibration Type (comment out one of these)
 GPIB.Write "SENSe:CORRection:COLLect:METHod refl3"
 GPIB.Write "SENSe:CORRection:COLLect:METHod SPARSOLT"

 ’Enable or disable (comment out one) measurement of isolation
 GPIB.Write "SENSe:CORRection:ISOLation ON"
 GPIB.Write "SENSe:CORRection:ISOLation OFF"

 ’Prompt for the ECal module
 MsgBox ("Connect ECal module to Port 1, then press enter")

 ’Acquire and store the calibration terms - return (*OPC) when finished
 GPIB.Write "SENSe:CORRection:COLLect:ACQuire ECALA;*OPC?"
 X = GPIB.Read
 MsgBox ("Done with calibration.")

 End Sub

Establish a VISA Session

This Visual Basic program demonstrates how to send a SCPI command using VISA and the
Agilent IO libraries. To run this program, you need:

• Your PC and PNA both connected to a LAN (for communicating with each other).
• The SICL and VISA components of Agilent’s I/O Libraries software installed on your PC.

Both are included when you install the software, unless you already have another
vendor's VISA installed. Then specify Full SICL and VISA installation to overwrite the
other vendor's VISA.

• The module visa32.bas added to your VB project. After you install VISA, the module will
be located at C:\VXIPNP\WINNT (or equivalent)\INCLUDE\Visa32.bas

• A form with two buttons: cmdRun and cmdQuit.
• Your PC configured to be a VISA LAN Client, and the SICL Server capability enabled on

the PNA. See Configure for VISA and SICL

 See Other SCPI Example Programs

450

Note: This example is a piece of a larger VISA program that performs a source power calibration.

’Session to VISA Default Resource Manager
 Private defRM As Long
 ’Session to PNA
 Private viPNA As Long
 ’VISA function status return code
 Private status As Long

 Private Sub Form_Load()
 defRM = 0
 End Sub

 Private Sub cmdRun_Click()
 ’ String to receive data from the PNA.
 ’ Dimensioned large enough to receive scalar comma-delimited values
 ’ for 21 frequency points (20 ASCII characters per point)
 Dim strReply As String * 420

 ’ Open the VISA default resource manager
 status = viOpenDefaultRM(defRM)
 If (status < VI_SUCCESS) Then HandleVISAError

 ’ Open a VISA session (viPNA) to the SICL LAN server
 ' at “address 16” on the PNA pointed to by the “GPIB0”
 ' VISA LAN Client on this PC.
 ' CHANGE GPIB0 TO WHATEVER YOU PNA IS SET TO
 status = viOpen(defRM, "GPIB0::16::INSTR", 0, 0, viPNA)
 If (status < VI_SUCCESS) Then HandleVISAError

 ' Need to set the VISA timeout value to give all our calls to
 ' myGPIBRead sufficient time to complete before a timeout
 ' error occurs.
 ' For this example, let's try setting the limit to
 ' 30000 milliseconds (30 seconds).
 status = viSetAttribute(viPNA, VI_ATTR_TMO_VALUE, 30000)
 If (status < VI_SUCCESS) Then HandleVISAError

 ' Preset the PNA
 status = myGPIBWrite(viPNA, "SYST:PRES")
 If (status < VI_SUCCESS) Then HandleVISAError

 ' Print the data using a message box
 MsgBox strReply
 End Sub

 Private Sub cmdQuit_Click()
 ' Close the resource manager session (which also closes
 ' the session to the PNA).
 If defRM <> 0 Then Call viClose(defRM)

 ' End the program
 End
 End Sub

 Private Function myGPIBWrite(ByVal viHandle As Long, ByVal strOut As
String) As Long
 ' The "+ Chr$(10)" appends an ASCII linefeed character to the

451

 ’ output, for terminating the write transaction.
 myGPIBWrite = viVPrintf(viHandle, strOut + Chr$(10), 0)
 End Function

 Private Function myGPIBRead(ByVal viHandle As Long, strIn As String) As
Long
 myGPIBRead = viVScanf(viHandle, "%t", strIn)
 End Function

 Sub HandleVISAError()
 Dim strVisaErr As String * 200
 Call viStatusDesc(defRM, status, strVisaErr)
 MsgBox "*** Error : " + strVisaErr, vbExclamation
 End
 End Sub

Getting and Putting Data using SCPI

This Visual Basic Program does the following:
• Reads data from the analyzer
• Puts the data back into memory
• To see the data on the analyzer after running the program, from the front panel click:

 Trace - Math/Memory - Memory Trace
To run this program, you need:

• An established GPIB interface connection

 See Other SCPI Example Programs

Note: To change the read and write location of data, removing the comment from the beginning
of ONE of the lines, and replace the comment in the beginning of the SDATA and SMEM lines.

Private Sub ReadWrite_Click()
 Dim i As Integer
 Dim t As Integer
 Dim q As Integer
 Dim dat As String
 Dim cmd As String
 Dim datum() As Double

 GPIB.Configure
 GPIB.Write "SYSTem:PRESet;*wai"

 ’Select the measurement
 GPIB.Write "CALCulate:PARameter:SELect ’CH1_S11_1’"

 ’Read the number of data points
 GPIB.Write "SENSe1:SWEep:POIN?"
 numpts = GPIB.Read

 ’Turn continuous sweep off
 GPIB.Write "INITiate:CONTinuous OFF"

 ’Take a sweep
 GPIB.Write "INITiate:IMMediate;*wai"

 ’Ask for the Data

 ’PICK ONE OF THESE LOCATIONS TO READ
 ’GPIB.Write "CALCulate:DATA? FDATA" ’Formatted Meas

452

 ’GPIB.Write "CALCulate:DATA? FMEM" ’Formatted Memory
 GPIB.Write "CALCulate:DATA? SDATA" ’Corrected, Complex Meas
 ’GPIB.Write "CALCulate:DATA? SMEM" ’Corrected, Complex Memory
 ’GPIB.Write "CALCulate:DATA? SCORR1" ’Error-Term Directivity

 ’Number of values returned per data point
 ’q = 1 ’ Pick this if reading FDATA or FMEM
 q = 2 ’ Otherwise pick this

 ’Parse the data
 ReDim datum(q, numpts)
 For i = 0 To numpts - 1
 For t = 0 To q - 1
 ’Read the Data
 dat = GPIB.Read(20)
 ’Parse it into an array
 datum(t, i) = Val(dat)
 Next t
 Next i

 ’PUT THE DATA BACK IN
 GPIB.Write "format ascii"

 ’PICK ONE OF THESE LOCATIONS TO PUT THE DATA
 ’cmd = "CALCulate:DATA FDATA," ’Formatted Meas
 ’cmd = "CALCulate:DATA FMEM," ’Formatted Memory
 ’cmd = "CALCulate:DATA SDATA," ’Corrected, Complex Meas
 cmd = "CALCulate:DATA SMEM," ’Corrected, Complex Memory
 ’cmd = "CALCulate:DATA SCORR1," ’Error-Term Directivity

 For i = 0 To numpts - 1
 For t = 0 To q - 1
 If i = numpts - 1 And t = q - 1 Then
 cmd = cmd & Format(datum(t, i))
 Else
 cmd = cmd & Format(datum(t, i)) & ","
 End If
 Next t
 Next i

 GPIB.Write cmd
 End Sub

GPIB using Visual C++

 See Other SCPI Example Programs

/*
 * This example assumes the user’s PC has a National Instruments GPIB
board. The example is comprised of three basic parts:
 *
 * 1. Initialization
 * 2. Main Body
 * 3. Cleanup
 *
 * The Initialization portion consists of getting a handle to the PNA
and then doing a GPIB clear of the PNA.

453

 *
 * The Main Body consists of the PNA SCPI example.
 *
 * The last step, Cleanup, releases the PNA for front panel control.
 */

 #include <stdio.h>
 #include <stdlib.h>

 /*
 * Include the WINDOWS.H and DECL-32.H files. The standard Windows
 * header file, WINDOWS.H, contains definitions used by DECL-32.H and
 * DECL-32.H contains prototypes for the NI GPIB routines and
constants.
 */
 #include <windows.h>
 #include "decl-32.h"

 #define ERRMSGSIZE 1024 // Maximum size of SCPI command string
 #define ARRAYSIZE 1024 // Size of read buffer

 #define BDINDEX 0 // Board Index of GPIB board
 #define PRIMARY_ADDR_OF_PNA 16 // GPIB address of PNA
 #define NO_SECONDARY_ADDR 0 // PNA has no Secondary address
 #define TIMEOUT T10s // Timeout value = 10 seconds
 #define EOTMODE 1 // Enable the END message
 #define EOSMODE 0 // Disable the EOS mode

 int pna;
 char ValueStr[ARRAYSIZE + 1];
 char ErrorMnemonic[21][5] = {"EDVR", "ECIC", "ENOL", "EADR", "EARG",
 "ESAC", "EABO", "ENEB", "EDMA", "",
 "EOIP", "ECAP", "EFSO", "", "EBUS",
 "ESTB", "ESRQ", "", "", "", "ETAB"};

 void GPIBWrite(char* SCPIcmd);
 char *GPIBRead(void);
 void GPIBCleanup(int Dev, char* ErrorMsg);

 int main()
 {

 char *opc;
 char *result;
 char *value;

 /*
 * ===
 * INITIALIZATION SECTION
 * ===
 */

 /*
 * The application brings the PNA online using ibdev. A device
handle,pna, is returned and is used in all subsequent calls to the PNA.
 */
 pna = ibdev(BDINDEX, PRIMARY_ADDR_OF_PNA, NO_SECONDARY_ADDR,
 TIMEOUT, EOTMODE, EOSMODE);

454

 if (ibsta & ERR)
 {
 printf("Unable to open handle to PNA\nibsta = 0x%x iberr = %d\n",
 ibsta, iberr);
 return 1;
 }

 /*
 * Do a GPIB Clear of the PNA. If the error bit ERR is set in ibsta,
call GPIBCleanup with an error message.
 */
 ibclr (pna);
 if (ibsta & ERR)
 {
 GPIBCleanup(pna, "Unable to perform GPIB clear of the PNA");
 return 1;
 }

 /*
 * ===
 * MAIN BODY SECTION
 * ===
 */

 // Reset the analyzer to instrument preset
 GPIBWrite("SYSTem:FPRESET");

 // Create S11 measurement
 GPIBWrite("CALCulate1:PARameter:DEFine ’My_S11’,S11");

 // Turn on Window #1
 GPIBWrite("DISPlay:WINDow1:STATe ON");

 // Put a trace (Trace #1) into Window #1 and ’feed’ it from the
measurement
 GPIBWrite("DISPlay:WINDow1:TRACe1:FEED ’My_S11’");

 // Setup the channel for single sweep trigger
 GPIBWrite("INITiate1:CONTinuous OFF;*OPC?");
 opc = GPIBRead();
 GPIBWrite("SENSe1:SWEep:TRIGger:POINt OFF");

 // Set channel parameters
 GPIBWrite("SENSe1:SWEep:POINts 11");
 GPIBWrite("SENSe1:FREQuency:STARt 1000000000");
 GPIBWrite("SENSe1:FREQuency:STOP 2000000000");

 // Send a trigger to initiate a single sweep
 GPIBWrite("INITiate1;*OPC?");
 opc = GPIBRead();

 // Must select the measurement before we can read the data
 GPIBWrite("CALCulate1:PARameter:SELect ’My_S11’");

 // Read the measurement data into the "result" string variable
 GPIBWrite("FORMat ASCII");
 GPIBWrite("CALCulate1:DATA? FDATA");
 result = GPIBRead();

 // Print the data to the display console window

455

 printf("S11(dB) - Visual C++ SCPI Example for PNA\n\n");
 value = strtok(result, ",");
 while (value != NULL)
 {
 printf("%s\n", value);
 value = strtok(NULL, ",");
 }

 /*
 * ===
 * CLEANUP SECTION
 * ===
 */

 /* The PNA is returned to front panel control. */
 ibonl(pna, 0);

 return 0;
 }

 /*
 * Write to the PNA
 */
 void GPIBWrite(char* SCPIcmd)
 {
 int length;
 char ErrorMsg[ERRMSGSIZE + 1];
 length = strlen(SCPIcmd) ;

 ibwrt (pna, SCPIcmd, length);
 if (ibsta & ERR)
 {
 strcpy(ErrorMsg, "Unable to write this command to PNA:\n");
 strcat(ErrorMsg, SCPIcmd);

 GPIBCleanup(pna, ErrorMsg);
 exit(1);
 }
 }

 /*
 * Read from the PNA
 */
 char* GPIBRead(void)
 {
 ibrd (pna, ValueStr, ARRAYSIZE);
 if (ibsta & ERR)
 {
 GPIBCleanup(pna, "Unable to read from the PNA");
 exit(1);
 }
 else
 return ValueStr;
 }

 /*
 * After each GPIB call, the application checks whether the call
succeeded. If an NI-488.2 call fails, the GPIB driver sets the
corresponding bit in the global status variable. If the call failed,
this procedure prints an error message, takes the PNA offline and exits.
 */

456

 void GPIBCleanup(int Dev, char* ErrorMsg)
 {
 printf("Error : %s\nibsta = 0x%x iberr = %d (%s)\n",
 ErrorMsg, ibsta, iberr, ErrorMnemonic[iberr]);
 if (Dev != -1)
 {
 printf("Cleanup: Returning PNA to front panel control\n");
 ibonl (Dev, 0);
 }
 }

Modify a Calibration Kit using SCPI

This Visual Basic program:
• Modifies Calibration kit number 3
• Completely defines standard #4 (thru)

To run this program, you need:
• An established GPIB interface connection

 See Other SCPI Example Programs

’Modifying cal kit number 3
 Calkitnum = 3

 ’Designate the kit selection to be used for performing cal’s
 GPIB.Write "SENSe:CORRection:COLLect:CKIT:SELect " & Val(Calkitnum)

 ’Reset to factory default values.
 GPIB.Write "SENSe:CORRection:COLLect:CKIT:RESet " & Val(Calkitnum)

 ’Name this kit with your own name
 GPIB.Write "SENSe:CORRection:COLLect:CKIT:NAME ’My Cal Kit’"

 ’Assign standard numbers to calibration classes
 ’Set Port 1, class 1 (S11A) to be standard #8
 GPIB.Write "SENSe:CORRection:COLLect:CKIT:ORDer1 8"
 ’Set Port 1, class 2 (S11B) to be standard #7
 GPIB.Write "SENSe:CORRection:COLLect:CKIT:ORDer2 7"
 ’Set Port 1, class 3 (S11C) to be standard #3
 GPIB.Write "SENSe:CORRection:COLLect:CKIT:ORDer3 3"
 ’Set Port 1, class 4 (S21T) to be standard #4
 GPIB.Write "SENSe:CORRection:COLLect:CKIT:ORDer4 4"
 ’Set Port 2, class 1 (S22A) to be standard #8
 GPIB.Write "SENSe:CORRection:COLLect:CKIT:ORDer5 8"
 ’Set Port 2, class 2 (S22B) to be standard #7
 GPIB.Write "SENSe:CORRection:COLLect:CKIT:ORDer6 7"
 ’Set Port 2, class 3 (S22C) to be standard #3
 GPIB.Write "SENSe:CORRection:COLLect:CKIT:ORDer7 3"
 ’Set Port 2, class 4 (S12T) to be standard #4
 GPIB.Write "SENSe:CORRection:COLLect:CKIT:ORDer8 4"

 ’Set up Standard #4 completely
 ’Select Standard #4; the rest of the commands act on it
 GPIB.Write "SENSe:CORRection:COLLect:CKIT:STANdard 4"
 GPIB.Write "SENSe:CORRection:COLLect:CKIT:STANdard:FMIN 300KHz"
 GPIB.Write "SENSe:CORRection:COLLect:CKIT:STANdard:FMAX 9GHz"
 GPIB.Write "SENSe:CORRection:COLLect:CKIT:STANdard:IMPedance 50"
 GPIB.Write "SENSe:CORRection:COLLect:CKIT:STANdard:DELay 1.234 ns"

457

 GPIB.Write "SENSe:CORRection:COLLect:CKIT:STANdard:LOSS 23e6"
 GPIB.Write "SENSe:CORRection:COLLect:CKIT:STANdard:C0 0"
 GPIB.Write "SENSe:CORRection:COLLect:CKIT:STANdard:C1 1"
 GPIB.Write "SENSe:CORRection:COLLect:CKIT:STANdard:C2 2"
 GPIB.Write "SENSe:CORRection:COLLect:CKIT:STANdard:C3 3"
 GPIB.Write "SENSe:CORRection:COLLect:CKIT:STANdard:L0 10"
 GPIB.Write "SENSe:CORRection:COLLect:CKIT:STANdard:L1 11"
 GPIB.Write "SENSe:CORRection:COLLect:CKIT:STANdard:L2 12"
 GPIB.Write "SENSe:CORRection:COLLect:CKIT:STANdard:L3 13"
 GPIB.Write "SENSe:CORRection:COLLect:CKIT:STANdard:LABel ’My Special
Thru’"
 GPIB.Write "SENSe:CORRection:COLLect:CKIT:STANdard:TYPE THRU"
 GPIB.Write "SENSe:CORRection:COLLect:CKIT:STANdard:CHARacteristic Coax"

Perform a 2-Port Calibration using SCPI

This Visual Basic program does a Full 2-Port Calibration, including Isolation, using ONE set of
calibration standards.
To run this program, you need:

• An established GPIB interface connection
• A 2-port measurement set up with desired frequency range, power, and so forth, ready to

be calibrated.
• The THRU and Isolation standard definitions apply in both directions

 See Other SCPI Example Programs

Sub SOLTCal()
 ’Turn off continuous sweep
 GPIB.Write "INITiate:CONTinuous OFF"

 ’Turn off two sets of standards
 GPIB.Write ":SENSe:CORRection:TSTandards OFF"

 ’Turn isolation acquisition on
 GPIB.Write "SENSe:CORRection:ISOLation ON

 ’Select 2-Port Calibration
 GPIB.Write "SENSe:CORRection:COLLect:METHod SPARSOLT"

 ’Set acquisition to FORWARD
 GPIB.Write "SENSe:CORRection:COLLect:SFORward ON

 ’Select a cal kit
 Calkitnum = 3
 GPIB.Write "SENSe:CORRection:COLLect:CKIT:SELect " & Val(Calkitnum)

 ’Measure the standards in forward direction
 MsgBox "Connect OPEN to Port 1; then press OK"
 Call Measurestandard("stan1")

 MsgBox "Connect SHORT to Port 1; then press OK"
 Call Measurestandard("stan2")

 MsgBox "Connect LOAD to Port 1; then press OK"
 Call Measurestandard("stan3")

458

 ’Set acquisition to REVERSE
 GPIB.Write "SENSe:CORRection:COLLect:SFORward OFF

 ’Measure the standards in reverse direction
 MsgBox "Connect OPEN to Port 2; then press OK"
 Call Measurestandard("stan1")

 MsgBox "Connect SHORT to Port 2; then press OK"
 Call Measurestandard("stan2")

 MsgBox "Connect LOAD to Port 2; then press OK"
 Call Measurestandard("stan3")

 ’Turn ON two sets of standards for Thru and Isolation standards
 GPIB.Write ":SENSe:CORRection:TSTandards ON"

 ’Measure the thru and isolation standards
 MsgBox "Connect THRU between Ports 1 and 2; then press OK"
 Call Measurestandard("stan4")

 MsgBox "Disconnect Ports 1 and 2 for isolation; then press OK"
 Call Measurestandard("stan5")

 ’Compute the coefficients and turn on error correction
 GPIB.Write "SENSe:CORRection:COLLect:SAVE"

 ’Resume continuous sweep.
 GPIB.Write "INITialize:CONTinuous ON"
 End Sub

 Sub Measurestandard(Std$)

 ’Store the results of a sweep as correction data
 GPIB.Write "SENSe:CORRection:COLLect " & Std$

 ’Take a sweep;return when complete
 GPIB.Write "INITiate:IMMediate;*OPC?"
 OPCreply = GPIB.Read

 End Sub

Perform a Guided Calibration using SCPI

This Visual Basic program does a Full 2-Port Calibration, including Isolation, using ONE set of
calibration standards.
To run this program, you need:

• An established GPIB interface connection
• A 2-port measurement set up with desired frequency range, power, and so forth, ready to

be calibrated.
• The THRU and Isolation standard definitions apply in both directions

 See Other SCPI Example Programs

Sub GuidedCal()

459

 Dim prompt As String
 Dim va As String
 Dim dat As String

 GPIB.Configure

 ’ Define the connectors
 GPIB.Write "sens:corr:coll:guid:conn:port1 ""Type N (50) male"" "
 GPIB.Write "sens:corr:coll:guid:conn:port2 ""Type N (50) female"" "
 GPIB.Write "sens:corr:coll:guid:conn:port3 ""Not used"" "
 Value = MsgBox("Two Connectors defined.")

 ’Define the Cal Kits
 GPIB.Write "sense:corr:coll:guid:ckit:port1 ""85054D"" "
 GPIB.Write "sense:corr:coll:guid:ckit:port2 ""85054D"" "
 Value = MsgBox("Two Kits Defined")

 ’ Initiate the calibration and query the number of steps
 GPIB.Write "sens:corr:coll:guid:init"
 GPIB.Write "sens:corr:coll:guid:steps?"
 stp = GPIB.Read(3)
 dat = stp
 Value = MsgBox("Number of steps is " + dat)

 ’ Measure the standards
 For i = 1 To stp
 va = i
 step1ofN = "Step " + va + " of " + dat
 GPIB.Write "sens:corr:coll:guid:desc? " + va
 prompt = GPIB.Read(80)
 Value = MsgBox(prompt, vbOKOnly, step1ofN)
 GPIB.Write "sens:corr:coll:guid:acq STAN" + va
 Next i

 ’ Save the calibration
 GPIB.Write "sens:corr:coll:guid:save"
 MsgBox ("2-Port cal done!")

 End Sub

Perform a Sliding Load Calibration using GPIB

This Visual Basic program does a only the sliding load portion of a Calibration.
To run this program, you need:

• An established GPIB interface connection
• A measurement and calibration routine to call this sub-program
• STAN3 set up as a sliding load standard

 See Other SCPI Example Programs

Sub slide()
 ’Measure the sliding load for at least 3 and no more than 7 slides
 ’Note that "SLSET" and "SLDONE" must be executed before the actual
acquisition of a slide
 MsgBox "Connect Sliding Load; set to Position 1; then press OK"
 GPIB.Write "SENS:CORR:COLL SLSET"
 GPIB.Write "SENS:CORR:COLL STAN3;"

460

 MsgBox "Set Sliding Load to position 2; then press OK"
 GPIB.Write "SENS:CORR:COLL SLSET"
 GPIB.Write "SENS:CORR:COLL STAN3;"

 MsgBox "Set Sliding Load to position 3; then press OK"
 GPIB.Write "SENS:CORR:COLL SLDONE"
 GPIB.Write "SENS:CORR:COLL STAN3;"
 End Sub

Perform a Source Power Cal using SCPI

Programming the PNA using COM or using SICL/VISA over LAN (as in this example) leaves the
PNA free to control GPIB devices as needed. This Visual Basic program demonstrates:

• Performing a source power calibration of Port 2 for Channel 1.
• Reading the calibration data.

To run this program, you need:
• One of the following power meters connected to the PNA through GPIB: E4416A, E4417A,

E4418A/B, E4419A/B, 437B, 438A, EPM-441A, EPM-442A

Note: If your power meter is other than these, you can create your own Power Meter Driver using
our template.

• Your PC and PNA both connected to a LAN (for communicating with each other).
• The SICL and VISA components of Agilent’s I/O Libraries software installed on your PC (both are

included when you install the software, unless you already have another vendor's VISA installed.
Then specify Full SICL and VISA installation to overwrite the other vendor's VISA.

• The module visa32.bas added to your VB project.
• A form with two buttons: cmdRun and cmdQuit.
• Your PC configured to be a VISA LAN Client, and the SICL Server capability enabled on the PNA.

 See Other SCPI Example Programs

Note: Never use GPIB to send the following SCPI command to the PNA:
SOURce:POWer:CORRection:COLLect:ACQuire <ASENsor | BSENsor>. Your PC would then be
in control of the GPIB, but this command requires the PNA to take GPIB control. The PNA
currently does not support “pass control” – a technique whereby GPIB control can be passed
back and forth between two machines.

’Session to VISA Default Resource Manager
 Private defRM As Long
 ’Session to PNA
 Private viPNA As Long
 ’VISA function status return code
 Private status As Long

 Private Sub Form_Load()
 defRM = 0
 End Sub

 Private Sub cmdRun_Click()
 ’ String to receive data from the PNA.
 ’ Dimensioned large enough to receive scalar comma-delimited values
 ’ for 21 frequency points (20 ASCII characters per point)
 Dim strReply As String * 420

 ’ Open the VISA default resource manager
 status = viOpenDefaultRM(defRM)
 If (status < VI_SUCCESS) Then HandleVISAError

461

 ’ Open a VISA session (viPNA) to the SICL LAN server
 ' at “address 16” on the PNA pointed to by the “GPIB0”
 ' VISA LAN Client on this PC.
 status = viOpen(defRM, "GPIB0::16::INSTR", 0, 0, viPNA)
 If (status < VI_SUCCESS) Then HandleVISAError

 ' Need to set the VISA timeout value to give all our calls to
 ' myGPIBRead sufficient time to complete before a timeout
 ' error occurs.
 ' For this example, let's try setting the limit to
 ' 30000 milliseconds (30 seconds).
 status = viSetAttribute(viPNA, VI_ATTR_TMO_VALUE, 30000)
 If (status < VI_SUCCESS) Then HandleVISAError

 ' Set the number of sweep points to 21 on Channel 1.
 status = myGPIBWrite(viPNA, "SENS1:SWE:POIN 21")
 If (status < VI_SUCCESS) Then HandleVISAError

 ' Specify the GPIB address of the power meter
 ' that will be used in performing the calibration.
 status = myGPIBWrite(viPNA, "SYST:COMM:GPIB:PMET:ADDR 13")
 If (status < VI_SUCCESS) Then HandleVISAError

 ' Turn use of the loss table OFF (this assumes there is
 ' virtually no loss in the RF path to the power sensor
 ' due to a splitter, coupler or adapter).
 status = myGPIBWrite(viPNA, "SOUR:POW:CORR:COLL:TABL:LOSS OFF")
 If (status < VI_SUCCESS) Then HandleVISAError

 ' Turn frequency checking OFF (so one power sensor is used for the
entire cal
 ' acquisition sweep regardless of frequency span).
 status = myGPIBWrite(viPNA, "SOUR:POW:CORR:COLL:FCH OFF")
 If (status < VI_SUCCESS) Then HandleVISAError

 ' Specify the cal power level in dBm expected at the desired reference
plane.
 status = myGPIBWrite(viPNA, "SOUR1:POW2:CORR:LEV –10 DBM")
 If (status < VI_SUCCESS) Then HandleVISAError

 ' Specify the number of power readings per frequency point (i.e.,
averaging factor)
 ' to be used during the source power cal acquisition.
 status = myGPIBWrite(viPNA, "SOUR1:POW2:CORR:COLL:AVER:COUN 2")
 If (status < VI_SUCCESS) Then HandleVISAError

 ' Specify the method (type of device) that will be used to perform the
cal.
 status = myGPIBWrite(viPNA, "SOUR1:POW2:CORR:COLL:METH PMET")
 If (status < VI_SUCCESS) Then HandleVISAError
 ' Perform the source power cal acquisition sweep using the sensor
attached to
 ' Channel A of the power meter (asking for an OPC reply when it’s
done). This
 ' assumes that the power sensor is already connected to Port 2 of the
PNA.
 status = myGPIBWrite(viPNA, "SOUR1:POW2:CORR:COLL:ACQ ASEN;*OPC?")
 If (status < VI_SUCCESS) Then HandleVISAError

 ' The PNA sends an OPC reply ("+1") when the cal acquisition is

462

complete, so
 ’ this Read is waiting on the reply until it is received.
 status = myGPIBRead(viPNA, strReply)
 If (status < VI_SUCCESS) Then HandleVISAError

 ’ Conclude the calibration. This applies the cal data to PNA channel
memory,
 ’ and turns the correction ON for Port 2 on Channel 1,
 ’ but does NOT save the calibration.
 status = myGPIBWrite(viPNA, "SOUR1:POW2:CORR:COLL:SAVE")
 If (status < VI_SUCCESS) Then HandleVISAError

 ’ Prepare for doing data transfer in ASCII format.
 status = myGPIBWrite(viPNA, "FORM:DATA ASCII")
 If (status < VI_SUCCESS) Then HandleVISAError

 ’ Read the source power correction data into the strReply string.
 status = myGPIBWrite(viPNA, "SOUR1:POW2:CORR:DATA?")
 If (status < VI_SUCCESS) Then HandleVISAError
 status = myGPIBRead(viPNA, strReply)
 If (status < VI_SUCCESS) Then HandleVISAError

 ’ Print the data using a message box
 MsgBox strReply
 End Sub

 Private Sub cmdQuit_Click()
 ’ Close the resource manager session (which also closes
 ’ the session to the PNA).
 If defRM <> 0 Then Call viClose(defRM)

 ’ End the program
 End
 End Sub

 Private Function myGPIBWrite(ByVal viHandle As Long, ByVal strOut As
String) As Long
 ’ The "+ Chr$(10)" appends an ASCII linefeed character to the
 ’ output, for terminating the write transaction.
 myGPIBWrite = viVPrintf(viHandle, strOut + Chr$(10), 0)
 End Function

 Private Function myGPIBRead(ByVal viHandle As Long, strIn As String) As
Long
 myGPIBRead = viVScanf(viHandle, "%t", strIn)
 End Function

 Sub HandleVISAError()
 Dim strVisaErr As String * 200
 Call viStatusDesc(defRM, status, strVisaErr)
 MsgBox "*** Error : " + strVisaErr, vbExclamation
 End
 End Sub

PNA as Controller and Talker / Listener

This Visual Basic Program uses VISA to do the following:
• This Visual Basic Program uses VISA to do the following:
• Control the PNA using a VISA LAN Client interface on the PNA.
• Control another instrument using the PNA as GPIB controller.

463

• Queries both the analyzer and other instrument to identify themselves with *IDN?

Note: This program can be modified to work from a remote PC to control both instruments. In that
case, set up the PNA to be a talker/listener.

To run this program, you need to do the following:
• Add module visa32.bas to the VB project. It is located on the analyzer at C:\Program

Files\HP\VXIPNP\WINNT\Include\VISA32.bas
• Configure the PNA for VISA / SICL
• Set up the PNA to be GPIB system controller.

1. On the System menu, point to Configure. Click SICL / GPIB
2. Click System Controller

• Connect another instrument to the analyzer through a GPIB cable with Primary address
of 13 on GPIB0 interface

 See Other SCPI Example Programs

Sub main()

’This application run from onboard the PNA
’can control both the PNA and another GPIB instrument.
’
’To run this program the module visa32.bas must be added
’to the project.

’VISA function status return code
Dim status As Long
’Session to Default Resource Manager
Dim defRM As Long
’Session to instrument
Dim viPNA As Long
’Session to other GPIB instrument
Dim viInstrument As Long
’String to hold results
Dim strRes As String * 200
On Error GoTo ErrorHandler

status = viOpenDefaultRM(defRM)
If (status < VI_SUCCESS) Then GoTo VisaErrorHandler

’Open the session to the PNA
status = viOpen(defRM, "GPIB1::16::INSTR", 0, 0, viPNA)
If (status < VI_SUCCESS) Then GoTo VisaErrorHandler

’Ask for the PNA’s ID.
status = viVPrintf(viPNA, "*IDN?" + Chr$(10), 0)
If (status < VI_SUCCESS) Then GoTo VisaErrorHandler

’Read the ID as a string.
status = viVScanf(viPNA, "%t", strRes)
If (status < VI_SUCCESS) Then GoTo VisaErrorHandler
’Display the results
MsgBox "PNA is: " + strRes

’Open the session to the other instrument
status = viOpen(defRM, "GPIB0::13::INSTR", 0, 0, viInstrument)
If (status < VI_SUCCESS) Then GoTo VisaErrorHandler

464

’Ask for the instrument’s ID.
status = viVPrintf(viInstrument, "*IDN?" + Chr$(10), 0)
If (status < VI_SUCCESS) Then GoTo VisaErrorHandler

’Read the ID as a string.
status = viVScanf(viPNA, "%t", strRes)
If (status < VI_SUCCESS) Then GoTo VisaErrorHandler

’Display the results
MsgBox "Other instrument is: " + strRes
’ Close the resource manager session (which closes everything)
Call viClose(defRM)
End

ErrorHandler:
’Display the error message
MsgBox "*** Error : " + Error$, MB_ICONEXCLAMATION
End

VisaErrorHandler:
Dim strVisaErr As String * 200
Call viStatusDesc(defRM, status, strVisaErr)
MsgBox "*** Error : " + strVisaErr

End
End Sub

Setup Sweep Parameters using SCPI

This Visual Basic program sets up sweep parameters on the Channel 1 measurement.
To run this program, you need:

• An established GPIB interface connection

 See Other SCPI Example Programs

GPIB.Write "SYSTem:PRESet"
 ’Select the measurement
 GPIB.Write "CALCulate:PARameter:SELect ’CH1_S11_1’"
 ’Set sweep type to linear
 GPIB.Write "SENSe1:SWEep:TYPE LIN"

 ’Set IF Bandwidth to 700 Hz
 GPIB.Write "SENSe1:BANDwidth 700"

 ’Set Center and Span Freq’s to 4 GHz
 GPIB.Write "SENSe1:FREQuency:CENTer 4ghz"
 GPIB.Write "SENSe1:FREQuency:SPAN 4ghz"

 ’Set number of points to 801
 GPIB.Write "SENSe1:SWEep:POINts 801"

 ’Set sweep generation mode to Analog
 GPIB.Write "SENSe1:SWEep:GENeration ANAL"

 ’Set sweep time to Automatic
 GPIB.Write "SENSe1:SWEep:TIME:AUTO ON"

465

 ’Query the sweep time
 GPIB.Write "SENSe1:SWEep:TIME?
 SweepTime = GPIB.Read

Setup the Display using SCPI

This Visual Basic program:

• Sets data formatting
• Turns ON the Trace, Title, and Frequency Annotation
• Autoscales the Trace
• Queries Per Division, Reference Level, and Reference Position
• Turn ON and set averaging
• Turn ON and set smoothing

To run this program, you need:
• An established GPIB interface connection

 See Other SCPI Example Programs

GPIB.Write "SYSTem:PRESet"

 ’Select the measurement
 GPIB.Write "CALCulate:PARameter:SELect ’CH1_S11_1’"

 ’Set the Data Format to Log Mag
 GPIB.Write ":CALCulate1:FORMat MLOG"

 ’Turn ON the Trace, Title, and Frequency Annotation
 GPIB.Write "Display:WINDow1:TRACe1:STATe ON"
 GPIB.Write "DISPlay:WINDow1:TITLe:STATe ON"
 GPIB.Write "DISPlay:ANNotation:FREQuency ON"

 ’Autoscale the Trace
 GPIB.Write "Display:WINDow1:TRACe1:Y:Scale:AUTO"

 ’Query back the Per Division, Reference Level, and Reference Position
 GPIB.Write "DISPlay:WINDow1:TRACe1:Y:SCALe:PDIVision?"
 Pdiv = GPIB.Read
 GPIB.Write "DISPlay:WINDow1:TRACe1:Y:SCALe:RLEVel?"
 Rlev = GPIB.Read
 GPIB.Write "DISPlay:WINDow1:TRACe1:Y:SCALe:RPOSition?"
 Ppos = GPIB.Read

 ’Turn ON, and average five sweeps
 GPIB.Write "SENSe1:AVERage:STATe ON"
 GPIB.Write "SENSe1:AVERage:Count 5"

 ’Turn ON, and set 20% smoothing aperture
 GPIB.Write "CALCulate1:SMOothing:STATe ON"
 GPIB.Write "CALCulate1:SMOothing:APERture 20"

466

 See Other SCPI Example Programs

Status Reporting using SCPI

This Visual Basic program demonstrates two methods of reading the analyzer’s status registers:

• Polled Bit Method - reads the Limit1 register continuously.
• SRQ Method - enables an interrupt of the program when bit 6 of the status byte is set to

1. The program then queries registers to determine if the limit line failed.
To run this program, you need:

• An established GPIB interface connection
• A form with two buttons: Poll and SRQ Method
• A means of causing the limit line to fail, assuming it passes initially.

Private Sub Poll_Click()
 ’ POLL THE BIT METHOD
 ’ Clear status registers
 GPIB.Write "*CLS"

 ’Loop FOREVER
 Do
 DoEvents
 GPIB.Write "STATus:QUEStionable:LIMit1:EVENt?"
 onn = GPIB.Read
 Loop Until onn = 2

 MsgBox "Limit 1 Failed "
 End Sub

 Private Sub SRQMethod_Click()
 ’SRQ METHOD
 GPIB.Write "SYSTem:PRESet"
 GPIB.Write "CALCulate:PARameter:SELect ’CH1_S11_1’"
 ’slow down the trace
 GPIB.Write "SENS:BWID 150"

 ’Setup limit line
 GPIB.Write "CALC:LIM:DATA 2,3e9,6e9,-2,-2"
 GPIB.Write "CALC:LIMit:DISP ON"
 GPIB.Write "CALC:LIMit:STATe ON"

 ’ Clear status registers.
 GPIB.Write "*CLS;*wai"
 ’ Clear the Service Request Enable register.
 GPIB.Write "*SRE 0"
 ’ Clear the Standard Event Status Enable register.
 GPIB.Write "*ESE 0"

 ’ Enable questionable register, bit(10) to report to the status byte.
 GPIB.Write "STATus:QUEStionable:ENABle 1024"

467

 ’ Enable the status byte register bit3 (weight 8) to notify controller
 GPIB.Write "*SRE 8"

 ’ Enable the onGPIBNotify event
 GPIB.NotifyMask = cwGPIBRQS
 GPIB.Notify
 End Sub

 --
 Private Sub GPIB_OnGPIBNotify(ByVal mask As Integer)
 ’ check to see what failed
 ’ was it the analyzer?
 GPIB.Write "*STB?"
 onn = GPIB.Read
 If onn <> 0 Then
 ’ If yes, then was it the questionable register?
 GPIB.Write "STATus:QUEStionable:EVENt?"
 onn = GPIB.Read
 ’ Determine if the limit1 register, bit 8 is set.
 If onn = 1024 Then
 ’if yes, then was it trace 1?
 GPIB.Write "STAT:QUES:LIMIT1:EVEN?"
 onn = GPIB.Read
 If onn = 2 Then MsgBox ("Limit Line1 Failed")
 End If
 End If
 End Sub

Learning about SCPI
Learning about GPIB

The following topics can help you learn more about controlling the PNA using SCPI and the
GPIB.
� GP-IB Fundamentals

� The Rules and Syntax of SCPI Commands

� Getting Data from the PNA using SCPI

� Configure for VISA and SICL

� Reading the PNA Status Registers

� Understanding SCPI Command Synchronization

GPIB Fundamentals

The General Purpose Interface Bus (GPIB) is a system of hardware and software that allows you
to control test equipment to make measurements quickly, accurately, and repeatably. This topic
contains the following information:
� The GPIB Hardware Components

� The GPIB / SCPI Programming Elements

� How to Configure for GPIB / SICL

� LCL- RMT Operation Label

� Specifications

� GPIB Interface Capability Codes

468

Note: All of the topics related to programming assume that you already know how to program,
preferably using a language that can control instruments.

Other Topics about GPIB Concepts

The GPIB Hardware Components
The system bus and its associated interface operations are defined by the IEEE 488 standard.
The following sections list and describe the main pieces of hardware in a GPIB system:

Instruments
The analyzer is configured as a Talker / Listener by default.

• Talkers are instruments that can be addressed to send data to the controller.
• Listeners are instruments that can be addressed to receive a command, and then

respond to the command. All devices on the bus are required to listen.

GPIB Addresses
Every GPIB instrument must have its own unique address on the bus. The analyzer address
(716) consists of two parts:

1. The Interface select code (typically 7) indicates which GPIB port in the system controller
is used to communicate with the device.

2. The primary address (16) is set at the factory. You can change the primary address of
any device on the bus to any number between 0 and 30. To change the analyzer address
click System \ Configure \ SICL-GPIB

The secondary address is sometimes used to allow access to individual modules in a modular
instrument system, such as a VXI mainframe. The analyzer does not have secondary addresses.

Controllers
Controllers specify the instruments that will be the talker and listener in a data exchange. The
controller of the bus must have a GPIB interface card to communicate on the GPIB.

• The Active Controller is the computer or instrument that is currently controlling data
exchanges.

• The System Controller is the only computer or instrument that can take control and give
up control of the GPIB to another computer or instrument, which is then called the active
controller.

The PNA can NOT be passed control of the GPIB. However, you can use VISA or SICL over LAN
to accomplish this. See this example. You can also accomplish this using COM programming.

Cables
GPIB Cables are the physical link connecting all of the devices on the bus. There are eight data
lines in a GPIB cable that send data from one device to another. There are also eight control lines
that manage traffic on the data lines and control other interface operations.
You can connect instruments to the controller in any arrangement with the following limitations:

• Do not connect more than 15 devices on any GPIB system. This number can be
extended with the use of a bus extension.

• Do not exceed a total of 20 meters of total cable length or 2 meters per device, whichever
is less.

• Avoid stacking more than three connectors on the back panel of an instrument. This can
cause unnecessary strain on the rear-panel connector.

The GPIB / SCPI Programming Elements
The following software programming elements combine to become a GPIB program:
� GPIB / SCPI Commands

� Programming Statements

469

� Instrument Drivers

GPIB Commands
The GPIB command is the basic unit of communication in a GPIB system. The analyzer responds
to three types of GPIB commands:
1. IEEE 488.1 Bus-management Commands
These commands are used primarily to tell some or all of the devices on the bus to perform
certain interface operations.
All of the functions that can be accomplished with these commands can also be done with IEEE
488.2 or SCPI commands. Therefore, these commands are not documented in this Help system.
For a complete list of IEEE 488.1 commands refer to the IEEE 488 standard. Examples of IEEE
488.1 Commands

• CLEAR - Clears the bus of any pending operations

• LOCAL - Returns instruments to local operation
2. IEEE 488.2 Common Commands
These commands are sent to instruments to perform interface operations. An IEEE 488.2
common command consists of a single mnemonic and is preceded by an asterisk (*). Some of
the commands have a query form which adds a "?" after the command. These commands ask the
instrument for the current setting. See a complete list of the Common Commands that are
recognized by the analyzer. Examples of IEEE 488.2 Common Commands

• *OPC - Operation Complete

• *RST - Reset

• *OPT? - Queries the option configuration
3. SCPI Commands
The Standard Commands for Programmable Instruments (SCPI) is a set of commands developed
in 1990. The standardization provided in SCPI commands helps ensure that programs written for
a particular SCPI instrument are easily adapted to work with a similar SCPI instrument. SCPI
commands tell instruments to do device specific functions. For example, SCPI commands could
tell an instrument to make a measurement and output data to a controller. Examples of SCPI
Commands:
CALCULATE:AVERAGE:STATE ON

SENSE:FREQUENCY:START?

For more information on SCPI:T
• The Rules and Syntax of SCPI Commands provides more detail of the SCPI command

structure.
• SCPI Command Tree is a complete list of the SCPI commands for the analyzer

Programming Statements
SCPI commands are included with the language specific I/O statements to form program
statements. The programming language determines the syntax of the programming statements.
SCPI programs can be written in a variety of programming languages such as VEE, HP BASIC,
or C++. Example of a Visual Basic statement:

• GPIB.Write "SOURCE:FREQUENCY:FIXED 1000 MHz"
Note about examples

Instrument Drivers
Instrument drivers are subroutines that provide routine functionality and can be reused from
program to program. GPIB industry leaders have written standards for use by programmers who
develop drivers. When programmers write drivers that comply with the standards, the drivers can
be used with predictable results. To comply with the standard, each instrument driver must
include documentation describing its functionality and how it should be implemented.

How to configure the PNA for GPIB / SICL Operation

470

Learn more about using the front panel interface

SICL / GPIB dialog box help

GPIB

Talker/Listener Sets the PNA to receive and send GPIB/SCPI messages to the system controller
(external computer).

Talker/Listener Address Sets the PNA talker/listener GPIB address.

System Controller Sets the PNA as the system controller, controlling GPIB communications of
external devices. Learn about the PNA as controller.

System Controller Address Sets the PNA system controller GPIB address.

SICL

471

SICL Enabled When checked, the analyzer is capable of running GPIB programs on its computer
to control analyzer functions. The programs must be run from a GPIB-capable programming
environment (VEE, Visual Basic). This mode does not allow control of external GPIB instruments.
To uncheck this box, exit the PNA application - (Click File, then Exit). The PNA restarts with the
SICL enabled box unchecked unless Automatically Enable on Startup is checked.

Learn more about Configuring for VISA and SICL.

Address Sets the PNA address.

Automatically Enable on Startup When checked, SICL Enabled is automatically selected when
starting the PNA application.

SCPI Monitor / Input

GPIB Command Processor Console Launches a window that is used to send single SCPI/GPIB
commands.

Note: Press Control+Z , then enter, to close the console window.

• Type a valid command, with appropriate arguments and press enter.

• Use the arrow keys to recall previous commands.

• The console window may launch behind the PNA application. Press Control+Tab to bring
the console window to the top.

Monitor GPIB Bus Enables monitoring activity on the GPIB.

Show GPIB Bus Monitor Window Shows and hides the window monitoring GPIB activity.

LCL and RMT Operation
The analyzer LCL and RMT (Local and Remote) operation labels appear in the lower right corner
of the status bar.

Note: The status bar is NOT visible when the analyzer is preset. To make the bar visible, click
View then Status Bar

• LCL appears when not under SCPI control
• RMT appears when under SCPI control. The RMT label does NOT appear when under

COM control

 RMT disables the front panel keys except for the Macro/Local key.
Pressing the Macro / Local key returns the analyzer to Local (front panel) operation.
The IEEE488.1 "GTL" (go to local) command also returns the analyzer to Local (front panel)
operation.
The IEEE488.1 "LLO" (local lockout) command disables the front panel Local button.

GPIB Specifications

Interconnected devices - Up to 15 devices (maximum) on one contiguous bus.

Interconnection path - Star or linear (or mixed) bus network, up to 20 meters total transmission
path length or 2 meters per device, whichever is less.

Message transfer scheme - Byte-serial, bit-parallel, asynchronous data transfer using an
interlocking 3-wire handshake.

Maximum data rate - 1 megabyte per second over limited distances, 250 to 500 kilobytes per
second typical maximum over a full transmission path. The devices on the bus determine the
actual data rate.

472

Address capability - Primary addresses, 31 Talk and 31 Listen; secondary addresses, 961 Talk
and 961 Listen. There can be a maximum of 1 Talker and up to 14 Listeners at a time on a single
bus. See also previous section on GPIB addresses.

GPIB Interface Capability Codes
The IEEE 488.1 standard requires that all GPIB compatible instruments display their interface
capabilities on the rear panel using codes. The codes on the analyzer, and their related
descriptions, are listed below:
SH1 full source handshake capability
AH1 full acceptor handshake capability
T6 basic talker, serial poll, no talk only, unaddress if MLA (My Listen Address)
TEO no extended talker capability
L4 basic listener, no listen only, unaddress if MTA (My Talk Address)
LEO no extended listener capability
SR1 full service request capability
RL1 full remote / local capability
PPO no parallel poll capability
DC1 full device clear capability
DT1 full device trigger capability
C1 system controller capability
C2 send IFC (Interface Clear) and take charge controller capability
C3 send REN (Remote Enable) controller capability
C4 respond to SRQ (Service Request)

The Rules and Syntax of SCPI

Most of the commands used for controlling instruments on the GPIB are SCPI commands. The
following sections will help you learn to use SCPI commands in your programs.
� Branches on the Command Tree

� Command and Query

� Multiple Commands

� Command Abbreviation

� Bracketed (Optional) Keywords

� Vertical Bars (Pipes)

� MIN and MAX Parameters

Other Topics about GPIB Concepts

Branches on the Command Tree
All major functions on the analyzer are assigned keywords which are called ROOT commands.
(See GPIB Command Finder for a list of SCPI root commands). Under these root commands are
branches that contain one or more keywords. The branching continues until each analyzer
function is assigned to a branch. A root command and the branches below it is sometimes known
as a subsystem.

473

For example, the following graphic shows the SOURce subsystem. Under the SOURce and
POWer keywords are several branch commands.

Sometimes the same keyword, such as STATE, is used in several branches of the command tree.
To keep track of the current branch, the analyzer’s command parser uses the following rules:

• Power On and Reset - After power is cycled or after *RST, the current path is set to the
root level commands.

• Message Terminators - A message terminator, such as a <NL> character, sets the
current path to the root command level. Many programming language output statements
send message terminators automatically. Message terminators are described in Sending
Messages to the Analyzer.

• Colon (:) - When a colon is between two command keywords, it moves the current path
down one level in the command tree. For example, the colon in :SOURCE:POWER
specifies that POWER is one level below SOURCE. When the colon is the first character of
a command, it specifies that the following keyword is a root level command. For example,
the colon in :SOURCE specifies that source is a root level command.

Note: You can omit the leading colon if the command is the first of a new program line. For
example, the following two commands are equivalent:
 SOUR:POW:ATT:AUTO
 :SOUR:POW:ATT:AUTO

• <WSP> - Whitespace characters, such as <tab> and <space>, are generally ignored.
There are two important exceptions:
• Whitespace inside a keyword, such as :CALC ULATE, is not allowed.
• Most commands end with a parameter. You must use whitespace to separate these

ending parameters from commands. Always refer to the command
documentation. In the following example, there is whitespace between STATE and
ON.

CALCULATE1:SMOOTHING:STATE ON

• Comma (,) - If a command requires more than one parameter, you must separate
adjacent parameters using a comma. For example, the SYSTEM:TIME command
requires three values to set the analyzer clock: one for hours, one for minutes, and one
for seconds. A message to set the clock to 8:45 AM would be SYSTEM:TIME 8,45,0.
Commas do not affect the current path.

• Semicolon(;) - A semicolon separates two commands in the same message without
changing the current path. See Multiple Commands later in this topic.

• IEEE 488.2 Common Commands - Common commands, such as *RST, are not part of
any subsystem. An instrument interprets them in the same way, regardless of the current
path setting.

Command and Query
A SCPI command can be an Event command, Query command (a command that asks the
analyzer for information), or both. The following are descriptions and examples of each form of
command. GPIB Command Finder lists every SCPI command that is recognized by the analyzer,
and its form.
Form Examples

Event commands - cause an action to occur inside :INITIATE:IMMEDIATE

474

the analyzer.

Query commands - query only; there is no
associated analyzer state to set.

:SYSTem:ERRor?

Command and query - set or query an analyzer
setting. The query form appends a question mark
(?) to the set form

:FORMat:DATA ! Command
 :FORMat:DATA? ! Query

Multiple Commands
You can send multiple commands within a single program message. By separating the
commands with semicolons the current path does not change. The following examples show
three methods to send two commands:

1. Two program messages:
SOURCE:POWER:START 0DBM
 SOURCE:POWER:STOP 10DBM

2. One long message. A colon follows the semicolon that separates the two commands
causing the command parser to reset to the root of the command tree. As a result, the
next command is only valid if it includes the entire keyword path from the root of the tree:

SOURCE:POWER:START 0DBM;:SOURCE:POWER:STOP 10DBM
3. One short message. The command parser keeps track of the position in the command

tree. Therefore, you can simplify your program messages by including only the keyword
at the same level in the command tree.

SOURCE:POWER:START 0DBM;STOP 10DBM

Common Commands and SCPI Commands
You can send Common commands and SCPI commands together in the same message. (For
more information on these types of commands see GP-IB Fundamentals.) As in sending multiple
SCPI commands, you must separate them with a semicolon.
Example of Common command and SCPI commands together
*RST;SENSE:FREQUENCY:CENTER 5MHZ;SPAN 100KHZ

Command Abbreviation
Each command has a long form and an abbreviated short form. The syntax used in this Help
system use uppercase characters to identify the short form of a particular keyword. The
remainder of the keyword is lower case to complete the long form.
SOUR - Short form
 SOURce - Long form

Either the complete short form or complete long form must be used for each keyword. However,
the keywords used to make a complete SCPI command can be a combination of short form and
long form.
The following is unacceptable - The first three keywords use neither short or long form.
SOURc:Powe:Atten:Auto on
The following is acceptable - All keywords are either short form or long form.

475

SOUR:POWer:ATT:AUTO on

In addition, the analyzer accepts lowercase and uppercase characters as equivalent as shown in
the following equivalent commands:
source:POW:att:auto ON
 Source:Pow:Att:Auto on

Optional [Bracketed] Keywords
You can omit some keywords without changing the effect of the command. These optional, or
default, keywords are used in many subsystems and are identified by brackets in syntax
diagrams.
Example of Optional Keywords
The HCOPy subsystem contains the optional keyword IMMediate at its first branching point. Both
of the following commands are equivalent:
"HCOPY:IMMEDIATE"
"HCOPY"
The syntax in this Help system looks like this:
HCOPy[:IMMediate]

Vertical Bars | Pipes
Vertical bars, or "pipes", can be read as "or". They are used in syntax diagrams to separate
alternative parameter options.
Example of Vertical Bars:
SOURce:POWer:ATTenuation:AUTO <on|off>

Either ON or OFF is a valid parameter option.

 MIN and MAX Parameters
The special form parameters "MINimum" and "MAXimum" can be used with some commands in
the analyzer, as noted in the command documentation. The short form (min) and long form
(minimum) of these two keywords are equivalent.

• MAXimum refers to the largest value that the function can currently be set to
• MINimum refers to the smallest value that the function can currently be set to.

For example, the following command sets the start frequency to the smallest value that is
currently possible:
SENS:FREQ:START MIN
In addition, the max and min values can also be queried for these commands.
For example, the following command returns the smallest value that Start Frequency can
currently be set to:
SENS:FREQ:START? MIN

An error will be returned if a numeric parameter is sent that exceeds the MAX and MIN values.
For example, the following command will return an "Out of range" error message.
SENS:FREQ:START 1khz

Getting Data from the Analyzer

Data is sent from the analyzer in response to program queries. Data can be short response
messages, such as analyzer settings, or large blocks of measurement data. This topic discusses
how to read query responses and measurement data from the analyzer in the most efficient
manner.

476

� Response Message Syntax

� Clearing the Output Queue

� Response Data Types

� Transferring Measurement Data

Note: Some PCs use a modification of the IEEE floating point formats with the byte order
reversed. To reverse the byte order for data transfer into a PC, the FORMat:BORDer command
should be used. See GPIB Command Finder for details.

Other Topics about GPIB Concepts

Response Message Syntax
Responses sent from the analyzer contain data, appropriate punctuation, and message
terminators.
<NL><^END> is always sent as a response message terminator. Most programming languages
handle these terminators transparent to the programmer.
Response messages use commas and semicolons as separators in the following situations:

• a comma separates response data items when a single query command returns multiple
values

FORM:DATA? ’Query
 ASC, +0 ’Analyzer Response

• a semicolon separates response data when multiple queries are sent within the same
messages

SENS:FREQ:STAR?;STOP? --Example Query

+1.23000000E+008; +7.89000000E+008<NL><^END> ’Analyzer Response

Clearing the Output Queue
After receiving a query, the analyzer places the response message in it’s output queue. Your
program should read the response immediately after the query is sent. This ensures that the
response is not cleared before it is read. The response is cleared when one of the following
conditions occur:

• When the query is not properly terminated with an ASCII carriage return character or the
GPIB <^END> message.

• When a second program query is sent.
• When a program message is sent that exceeds the length of the input queue
• When a response message generates more response data than fits in the output queue.
• When the analyzer is switched ON.

Response Data Types
The analyzer sends different response data types depending on the parameter being queried.
You need to know the type of data that will be returned so that you can declare the appropriate
type of variable to accept the data. For more information on declaring variables see your
programming language manual. The GPIB Command Finder lists every GPIB command and the
return format of data in response to a query. The analyzer returns the following types of data:
� Numeric Data

� Character Data

� String Data

� Block Data

477

Numeric Data
The analyzer sends ASCII character data that looks like numeric data. All numeric data sent over
the GPIB is character data.

Character Data
Character data consists of ASCII characters grouped together in mnemonics that represent
specific analyzer settings. The analyzer always returns the short form of the mnemonic in upper-
case alpha characters. Character data looks like string data. Therefore, refer to the GPIB
Command Finder to determine the return format for every command that can be queried.
Example of Character Data
MLOG

String Data
String data consists of ASCII characters. String parameters can contain virtually any set of ASCII
characters. When sending string data to the analyzer, the string must begin with a single quote (’
) or a double quote (") and end with the same character (called the delimiter).

Note: The analyzer responds best to all special characters if the string is enclosed in single
quotes. If quotes are not used, the analyzer will convert the text to uppercase. The analyzer may
not respond as you expect.

The analyzer always encloses data in double quotes when it returns string data.
Example of String Data
GPIB.Write "DISP:WINDow:TITLe:DATA?"
“This is string response data.”

Block Data
Block data is used to transfer measurement data. Although the analyzer will accept either definite
length blocks or indefinite length blocks, it always returns definite length block data in response to
queries unless the specified format is ASCII. The following graphic shows the syntax for definite
block data:

<num_digits> specifies how many digits are contained in <byte_count>
 <byte_count> specifies how many data bytes will follow in <data bytes>
Example of Definite Block Data

#17ABC+XYZ<nl><end>
- always sent before definite block data
1 - specifies that the byte count is one digit (7)
7 - specifies the number of data bytes that will follow, not counting <NL><END>
<NL><END> - always sent at the end of block data

Transferring Measurement Data
Measurement data is blocks of numbers that result from an analyzer measurement. Measurement
data is available from various processing arrays within the analyzer. For more information on the
analyzer’s data processing flow, see Accessing Data Map. Regardless of which measurement
array is read, transferring measurement data is done the same.

478

When transferring measurement data, there are two data types to choose from:
• REAL
• ASCII

The following graphic shows the differences in transfer times between the two:

REAL Data
REAL data (also called floating-point data) types transfer faster. This is because REAL data is
binary and takes about half the space of ASCII data. The disadvantage of using REAL data is that
it requires a header that must be read. See definite length block data. The binary floating-point
formats are defined in the IEEE 754-1985 standard. The following choices are available in REAL
format:

• REAL,32 - IEEE 32-bit format - single precision (not supported by HP BASIC)
• REAL,64 - IEEE 64-bit format - double precision

These data types are selected using the FORMat:DATA command.

ASCII Data
The easiest and slowest way to transfer measurement data is to use ASCII data. If the data
contains both numbers and characters, the setting of FORMat:DATA is ignored. ASCII data is
separated by commas.

Reading the Analyzer’s Status Register

The analyzer has several status registers that your program can read to know when specific
events occur. There are two methods of reading the status registers in the analyzer: the Polled Bit
method and the Service Request method.
� Polled Bit Method

� Service Request Method

� Setting and Reading Bits in Status Registers

� Positive and Negative Transitions
� Status Commands

Other Topics about GPIB Concepts

Most of the status registers in the analyzer are sixteen bits. For simplicity, this topic will illustrate
their use with 8-bit registers. Bits in registers represent the status of a different conditions inside
of the analyzer. In the following graphic, a register is represented by a row of boxes; each box
represents a bit. Bit 3 is ON.

479

The Polled Bit Method
With the Polled Bit Method, your program continually monitors a bit in the status register that
represents the condition of interest to you. When the analyzer sets the bit to 1, your program
immediately sees it and responds accordingly.
Advantage: This method requires very little programming.
Disadvantage: This method renders your program unavailable to do anything other than poll the
bit of interest until the condition occurs.
Procedure:
1. Decide which condition to monitor. The Status Commands topic lists all of the possible
conditions that can be monitored in the analyzer.
2. Determine the command and the bit that will monitor the command.
3. Construct a loop to poll that bit until it is set.
4. Construct the routine to respond when the bit is set.

The Service Request (SRQ) Method
Your program enables the bits in the status registers representing the condition of interest. When
the condition occurs, the analyzer actively interupts your program from whatever it is doing, and
an event handler in your program responds accordingly. Do this method if you have several
conditions you want to monitor or the conditions are such that it is not practical to wait for the
condition to occur.
Advantage: This method frees your program to do other things until the condition occurs. The
program is interupted to respond to the condition.
Disadvantage: This method can require extensive programming depending on the number and
type of conditions that you want to monitor.
Procedure:
1. Decide which conditions to monitor. The Status Commands topic lists all of the possible
analyzer conditions that can be monitored.
2. Set the enable bits in the summary registers and the status byte register.

Enabling is like making power available to a light - without power available, the switch can
be activated, but the light won’t turn ON. In the analyzer, without enabling, the condition
may occur, but the controller won’t see it unless it is enabled.
The condition, and the bit in the summary registers in the reporting path, must be enabled.
Summary This is like streams (conditions) flowing into rivers (summary registers), and
rivers flowing into the ocean (controller). See the diagram of status registers in Status
Commands.
Bit 6 of the status byte register is the only bit that can interrupt the controller. When any
representative bit in the status byte register goes ON, bit 6 is automatically switched ON.

4. Enable your program to interupt the controller, This is done several ways depending on the
programming language and GPIB interface card you use. An example program is provided
showing how this is done with in Visual Basic with a National Instruments GPIB card.
5. Construct a subroutine to handle the interrupt event. If you are monitoring more than one
condition in your system, your event handler must determine which condition caused the interupt.
Use the *SPE command to determine the instrument that caused the interupt and then poll the
summary registers, and then condition registers to determine the cause of the interupt.

Setting and Reading Bits in Status Registers
Both methods for reading status registers requires that you read bits out of the status registers.
Most of the analyzers status registers contain 16 bits, numbered 0 to 15. Each bit has a weighted
value. The following example shows how to set the bits in a 8-bit status register.

480

8-bit register
Bit 0 1 2 3 4 5 6 7
Weight 1 2 4 8 16 32 64 128

We want to set bits 4 and 5 in the Standard Event Status Enable register.
Step Example
1. Read the weighted bit value for these bits weights 16 and 32 (respectively)
2. Add these values together 16 + 32 = 48
3. Send this number as an argument in the
appropriate command. (see Status
Commands)

STAT:QUES:LIMIT1:ENAB 1026

Positive and Negative Transitions
Transition registers control what type of in a condition register will set the corresponding bit in the
event register.

• Positive transitions (0 to 1) are only reported to the event register if the corresponding
positive transition bit is set to 1.

• Negative transitions (1 to 0) are only reported to the event register if the corresponding
negative transition bit is set to 1.

• Setting both transition bits to 1 causes both positive and negative transitions to be
reported.

Transition registers are read-write and are unaffected by *CLS (clear status) or queries. They are
reset to their default settings at power-up and after *RST and SYSTem:PRESet commands. The
following are the default settings for the transition registers:

• All Positive Transition registers = 1
• All Negative Transition registers = 0

This means that by default, the analyzer will latch all event registers on the negative to positive
transition (0 to 1).
The following is an example of why you would set transitions registers:
A critical measurement requires that you average 10 measurements and then restart averaging.
You decide to poll the averaging bit. When averaging is complete, the bit makes a positive
transition. After restart, you poll the bit to ensure that it is set back from 1 to 0, a negative
transition. You set the negative transition bit for the averaging register.

Understanding Command Synchronization

The analyzer takes more time to process some commands than others:
• Sequential commands are processed quickly and in the order in which they are received.
• Overlapped commands take longer to process. Therefore, they allow the program to do

other tasks while waiting. However, the programmer may want to prevent the analyzer
from processing new commands until the overlapped command has completed. This is
called "synchronizing" the analyzer and controller.

Note: The analyzer has two overlapped commands:
 INITitate:IMMediate

 SENSe:SWEep:MODE GROUPS (when INIT:CONT is ON)

The analyzer’s queues store commands and responses waiting to be processed. Using the
analyzer’s queues and controlling the processing sequence of overlapped commands is called
synchronizing the analyzer and the controller. This topic discusses how and when synchronizing
should be performed.
� Analyzer Queues

� Synchronizing Overlapped Commands

481

Other Topics about GPIB Concepts

Analyzer Queues
Queues are memory buffers that store messages until they can be processed. The analyzer has
the following queues:
� Input Queue

� Output Queue

� Error Queue

Input Queue
The controller sends statements to the analyzer without regard to the amount of time required to
execute the statements. The input queue is very large (31k bytes). It temporarily stores
commands and queries from the controller until they are read by the analyzer’s command parser.
The input queue is cleared when the analyzer is switched ON.

Output Queue
When the analyzer parses a query, the response is placed in the output queue until the controller
reads it. Your program should immediately read the response or it may be cleared from the output
queue. The following conditions will clear a query response:

• When a second query is sent before reading the response to the first. This does not apply
when multiple queries are sent in the same statement.

• When a program statement is sent that exceeds the length of the input queue.
• When a response statement generates more data than fits in the output queue.
• When the analyzer is switched ON.

Error Queue
Each time the analyzer detects an error, it places a message in the error queue. When the
SYSTEM:ERROR? query is sent, one message is moved from the error queue to the output queue
so it can be read by the controller. Error messages are delivered to the output queue in the order
they were received. The error queue is cleared when any of the following conditions occur:

• When the analyzer is switched ON.
• When the *CLS command is sent to the analyzer.
• When all of the errors are read.

If the error queue overflows, the last error is replaced with a "Queue Overflow" error. The
oldest errors remain in the queue and the most recent error is discarded.

Synchronizing Overlapped Commands
GPIB commands are executed and processed by the analyzer in the order they are received.
Commands can be divided into two broad classes:

• Overlapped commands generally take extended time to process by the analyzer.
Examples of functions that have overlapped commands are printing and making
measurements. Because they take longer to process, they allow the execution of
subsequent commands while the overlapped command is still in progress. However, the
programmer may want to prevent the analyzer from processing new commands until the
overlapped command has completed. This is called "synchronizing" the analyzer and
controller.

• Sequential commands are generally processed quickly by the analyzer. Therefore, they
prevent the processing of subsequent commands until the sequential command has been
completely processed. These commands do NOT require synchronization.

482

� Synchronization Methods

� When To Synchronize

Synchronization Methods
The following common commands are used to synchronize the analyzer and controller. Examples
are included that illustrate the use of each command in a program. See the SCPI command
details to determine if a command is an overlapped command.
� *WAI

� *OPC?

� *OPC

*WAI
The *WAI command:

• Stops the analyzer from processing subsequent device commands until all overlapped
commands are completed.

• It does NOT stop the controller from sending commands to this and other devices on
the bus. This is the easiest method of synchronization.

Example of the *WAI command
GPIB.Write "ABORT;:INITIATE:IMMEDIATE" ’Restart the measurement.
 GPIB.Write "CALCULATE:MARKER:SEARCH:MAXIMUM" ’Search for max amplitude.
 GPIB.Write "CALCULATE:MARKER:X?" ’Which frequency?
The following timeline shows how the processing times of the three commands relate to each
other:

INITIATE:IMMEDIATE is an overlapped command; it allows the immediate processing of the
sequential command, CALCULATE:MARKER:SEARCH:MAXIMUM. However, the
INITIATE:IMMEDIATE is not considered complete until the measurement is complete.
Therefore, the marker searches for maximum amplitude before the measurement completes. The
CALCULATE:MARKER:X? query could return an inaccurate value.
To solve the problem, insert a *WAI command.
GPIB.Write "ABORT;:INITIATE:IMMEDIATE" ’Restart the measurement.
 GPIB.Write "*WAI" ’Wait until complete.
 GPIB.Write "CALCULATE:MARKER:MAXIMUM" ’Search for max amplitude.
 GPIB.Write "CALCULATE:MARKER:X?" ’Which frequency

The timeline now looks like this:

483

The *WAI command keeps the MARKER:SEARCH:MAXIMUM from taking place until the
measurement is completed. The CALCULATE:MARKER:X? query returns the correct value.

Note: Although *WAI stops the analyzer from processing subsequent commands, it does not stop
the controller. The controller could send commands to other devices on the bus.

*OPC?
The *OPC? query stops the controller until all pending overlapped commands are
completed.
In the following example, the Read statement following the *OPC? query will not complete until
the analyzer responds, which will not happen until all pending overlapped commands have
finished. Therefore, the analyzer and other devices receive no subsequent commands. A "1" is
placed in the analyzer output queue when the analyzer completes processing an overlapped
command. The "1" in the output queue satisfies the Read command and the program continues.

Example of the *OPC? query Click
This program determines which frequency contains the maximum amplitude.
GPIB.Write "ABORT; :INITIATE:IMMEDIATE"! Restart the measurement
GPIB.Write "*OPC?" ’Wait until complete
Meas_done = GPIB.Read ’Read output queue, throw away result
GPIB.Write "CALCULATE:MARKER:MAX" ’Search for max amplitude
GPIB.Write "CALCULATE:MARKER:X?" ’Which frequency?
Marker_x = GPIB.Read
PRINT "MARKER at " & Marker_x & " Hz"

484

*OPC
The *OPC command allows the analyzer and the controller to process commands while
processing the overlapped command.
When the analyzer completes processing an overlapped command, the *OPC command sets bit
0 of the standard event register to 1 . This requires polling of status bytes or use of the service
request (SRQ) capabilities of your controller. See Reading the Analyzer’s Status Registers for
more information about the standard event status register, generating SRQs, and handling
interrupts.

Note: Be careful when sending commands to the analyzer between the time you send *OPC and
the time you receive the interrupt. Some commands could jeopardize the integrity of your
measurement. It also could affect how the instrument responds to the previously sent *OPC.

Example of polled bit and SRQ processes.

When To Synchronize the Analyzer and Controller
Although a command may be defined as an overlapped command, synchronization may not be
required. The need to synchronize depends upon the situation in which the overlapped command
is executed. The following section describes situations when synchronization is required to
ensure a successful operation.
� Completion of a Measurement

� Measurements with External Trigger

� Averaged Measurements

Completion of a Measurement
To synchronize the analyzer and controller to the completion of a measurement, use the
ABORT;INITIATE:IMMEDIATE command sequence to initiate the measurement.
This command sequence forces data collection to start (or restart) under the current
measurement configuration. A restart sequence, such as ABORT;INITIATE:IMMEDIATE is an
overlapped command. It is complete when all operations initiated by that restart command
sequence, including the measurement, are finished. The *WAI,*OPC? and *OPC commands
allow you to determine when a measurement is complete. This ensures that valid measurement
data is available for further processing.

Measurements with External Trigger
To use an external trigger, synchronize the analyzer and controller before the trigger is supplied
to the measurement. Setup the analyzer to receive a trigger from an external source (wired to the
EXTERNAL TRIGGER connector on the rear panel. The trigger system is armed by GPIB with
INITIATE:IMMEDIATE. (Because the source of the trigger has been specified as external, this
command "readies" the analyzer for a trigger but it does not actually generate the trigger.).

Averaged Measurements
Averaged measurements are complete when the average count is reached. The average count is
reached when the specified number of individual measurements is combined into one averaged
measurement result. Use synchronization to determine when the average count has been
reached.
If the analyzer continues to measure and average the results after the average count is reached,
use synchronization to determine when each subsequent measurement is complete.

485

PNA as Controller and Controlled

The PNA does not have Pass control capability that other GPIB instruments have. Pass control
allows the instrument to be programatically changed from being a controlled instrument to being
the active controller ont he bus. However, there are other means for accomplishing the same
thing. One is to control the PNA over LAN with VISA or SICL. See ... for more information on this.

The other way is to use a second GPIB port in the PNA. This can be done with a USB to GPIB
interface card.
This is the hardware you need
This is how you configure it.
This is a sample program.

Configure for SCPI LAN using SICL / VISA

Programming the PNA using the SICL / VISA LAN Client interface to send and receive SCPI
commands has several advantages over using the GPIB interface.

• No GPIB cables or interface card is necessary; the physical connection is over LAN
• The PNA can NOT be both a controller and talker/listener over GPIB at the same time.

Using LAN to control the PNA leaves the PNA free to use the GPIB interface to control
other GPIB devices.

• Data transfer speed is faster over LAN than GPIB

Note: SCPI commands can also be sent to the PNA using the SCPIStringParser of the COM
interface. For optimum performance, use the COM interface to control the PNA objects directly.

To control the PNA using the SICL or VISA LAN Client interface, the external controller must
have the Agilent I/O Libraries installed. Download a free copy at
http://ftp.agilent.com/pub/mpusup/pc/binfiles/iop/index.html
The Agilent IO libraries include two libraries:

• VISA - the public-standard Virtual Instrument Software Architecture.
• SICL - the original Standard Instrument Control Library

Each of these libraries provides a software interface which will allow you to control your PNA with
SCPI over LAN.

Note: The Agilent I/O Libraries are installed on the PNA. To run your SICL / VISA application on
the PNA to control the PNA, set up a SICL or VISA LAN Client interface on the PNA, specifying
the LAN hostname of that same PNA. This will work even if the PNA is not connected to a LAN.

Configure the PNA for SICL / VISA
1. On the PNA, click System then check Windows Taskbar
2. Click Start then point to Program Files, Agilent IO Libraries, then click IO Config
3. In the Configured Interfaces dialog box, click hpib7 then click Edit (at the bottom of the

dialog box). Note the VISA Interface Name.
4. Click OK to close the dialog, then click OK to close IO Config.
5. From the PNA System menu, point to Configure then click SICL/GPIB.
6. To enable SICL automatically when the PNA is rebooted, check Automatically enable

on Startup. Otherwise, check SICL Enabled then click OK. Learn more about this
dialog box.

The PNA is now ready to be controlled from within the PNA or over the LAN.

To Configure a PC to Control the PNA over LAN:
When configuring your controller PC, choose whether to use VISA or SICL. If you intend to have
your code also support GPIB, then VISA is recommended as many different vendors of GPIB
cards support VISA. SICL only supports Agilent GPIB cards.

486

1. On a PC with the Agilent I/O Libraries installed, click Start, then point to Programs,
Agilent IO Libraries, then click IO Config. In the list of Available Interface Types click
LAN Client , then click Configure.

2. In the LAN Client dialog box, click OK. In the Configured Interfaces box, you should see
under SICL Name a new entry: lan or lanx, where x is an integer.

3. To use VISA,
1. Click VISA LAN Client , then click Configure.
2. In Remote Hostname, enter the full computer name of the PNA. Then click OK. Find

your PNA computer name by going to Control Panel \ System \ Network Identification
\ Full Computer name.

3. In the I/O Config list of Configured Interfaces, you should see a new entry with VISA
Name of GPIBx, where x is an integer.

4. Click OK to close I/O Config.
5. Use this example program to test your VISA configuration.

Other Topics about GPIB Concepts

Rear Panel Connectors
Auxiliary I/O Connector

General Description
This DB-25 male connector provides a variety of analog I/O, digital I/O, timing I/O, and supply
lines. You can change the settings on the Auxiliary IO connector through SCPI and COM
programming commands. The settings are NOT accessible through the front-panel keys or
display menu.

Pin Name Description
1 ACOM Ground reference for analog signals
2 Analog Out 2 -10 to +10Vdc output, 10mA max
3 Analog Out 1 -10 to +10Vdc output, 10mA max
4 no connect for future enhancements
5 DCOM Ground reference for digital signals
6 reserved for future enhancements
7 reserved for future enhancements
8 reserved for future enhancements
9 +5V +5Vdc output, 100mA max.
10 Pass/Fail Write

Strobe
Indicates pass/fail line is valid (active low)

11 Sweep End Indicates sweep is done (programmable modes)
12 Pass/Fail Indicates pass/fail (programmable logic, modes and scope)
13 Output Port Write

Strobe
Writes I/O port data (active low)

14 Analog In -10 to +10VDC analog input
15 ACOM Ground reference for analog signals
16 Power Button In Grounding replicates front panel power button press
17 DCOM Ground reference for digital signals
18 Ready for Trigger Indicates ready for external trigger (active low)
19 External Trigger

In
Measurement trigger input (programmable to be active high or low)

20 Footswitch In Active low input latches a user-readable status bit.

487

21 +22V +22Vdc output, 100mA max.
22 In/Out port C0 General purpose input / output
23 In/Out port C1 General purpose input / output
24 In/Out port C2 General purpose input / output
25 In/Out port C3_ General purpose input / output

ACOM (pins 1, 15)
Description
Analog common (ground) - To be used with the Analog Out and Analog In lines.
ACOM and DCOM are connected to system ground at a star ground point inside the analyzer.

Analog Out 1, 2 (pins 2, 3)
Description
Two analog outputs programmable to +/-10V; Iout<10mA; Rout=100 ohms
12-bit DACs with voltage resolution of approximately 5mV/count.
The DACs are set to constant values using SCPI or COM, and can be read using SCPI or COM
commands.
Preset state for both pins is 0 volts.
HW Details
Looking into this output pin is a 100-ohm series resistor followed by two diodes tied to +/-15V for
static protection, then the output or an op-amp.
The voltage output is provided by a 12-bit DAC with an op amp buffer.
Specifics:

• Maximum output current = 10mA
• Settling time = 3us

Timing
The DACs are set after the last data point is measured, during retrace. If the analyzer is in single
sweep mode, the DACs are set as part of the presweep process, before the sweep is triggered.

DCOM (pins 5, 17)
Description
Digital common (ground).
Used with the digital input and output lines.
ACOM and DCOM are connected to system ground at a star ground point inside the analyzer.

Pins 6, 7, 8
Description
Reserved

+5V (pin 9)
Description
+5V nominal output (100mA max).
Protected by self-healing fuse:

Pass/Fail Write Strobe (pin 10)
Description
See Handler IO connector.

488

Sweep End (pin 11)
Description
See Handler IO connector.

Pass/Fail (pin 12)
Description
See Handler IO connector.

Output Port Write Strobe (pin 13)
Description
See Handler IO connector.

Analog In (pin 14)
Description
Analog input, +/-10V range, Rin=100k ohm
Bandwidth = 40kHz (2-pole lowpass filter).
This analog input may be read using the SCPI or COM commands.
HW Details
Looking into this pin there is 1k-ohm series resistor followed by 100k-ohm resistor to ground,
static protection diodes after the 1k resistor limit the signal to +/-15V, then a high impedance
buffer and active filter limiting the bandwidth to 40kHz with a lowpass filter.

Power Button In (pin 16)
Description
Short this pin to ground to replicate a front panel power button key press.
HW Details
Looking into the pin there is a 215-ohm series resistor followed by a 10k pull-up to the 3V standby
supply, static protection diodes to the 0V/5V and then connects to the front panel power key
circuit.
CAUTION: Because this line is internally pulled up to 3V, it should not be driven by a TTL driver.
Timing
Grounding this line for 1us to 2 seconds will simulate pressing the front panel power button.
Grounding this line for >4 seconds will perform a hard reset (similar to a personal computer) and
is not recommended.

Ready for Trigger (pin 18)
Description
TTL output.
Active Low signal indicates that system is ready for an external trigger.
Remains High if system is not in External Trigger mode.
Goes High after an External Trigger is acknowledged.
Goes Low after the system has finished with its measurements, the source has been set up, and
the next data point is ready to be measured.
HW Details
Looking into this pin there is a 215-ohm series resistor followed by a 10k pullup, diodes to 0V/5V
for static protection, then the output of an "ABT" TTL buffer.
This line is enabled only when the analyzer is in External Trigger mode.
Refer to External Trigger In (following pin) for more information.
Timing
Refer to External Trigger In (following pin)

489

External Trigger In (pin 19)
Description
TTL input
This level-sensitive input will trigger the next measurement.
The trigger level mode is set by the user through the UI, SCPI or COM to either a TTL Low or a
TTL High. Default is TTL High)
A single trigger is achieved by asserting the external trigger for a period from 1us to 50us.
Continuous triggering is achieved by holding the external trigger in the "asserted" mode (either
Low or High).
The External Trigger may trigger any of the following:

• next point measurement
• next channel measurement
• next Global measurement. (Default)

The External Trigger line is ignored if either "Ready For Trigger" is invalid or the analyzer is not in
External Trigger mode. After a trigger, the analyzer will do the following:

• Autorange
• Measure data
• Move to the next measurement
• Indicate "ready for trigger".

The preset state for Trigger is "Internal".
HW Details
Looking into this pin is a 215-ohm series resistor followed by a 4.64k pullup, 1000pF to ground
and then a "FAST" TTL buffer input.
Timing
The trigger width should be between 1us and 50us.

Footswitch In (pin 20)
Description
TTL input.
A Low level input such as shorting this line to ground using a footswitch (where the input stays
low for >1us) will be latched.
The latched status may be read using the SCPI or COM commands.
Only one footswitch press can be latched (remembered) by the system.
Reading the latch status will reset it if Footswitch In has returned to a high level.
HW Details
Looking into this pin is a 215-ohm series resistor followed by a 4.64k pullup to 5V and 1000pF to
ground. This line is an input to a "FAST" TTL buffer.
Timing
Footswitch In must be Low for at least 1us.

+22V (pin 21)
Description
+22V nominal output (100mA max).
 Protected by self-healing fuse.

490

In/Out Port C0-C3 (pins 22-25)
Description
See Handler IO connector

External Test Set I/O Connector

General Description
This DB-25 female connector is used to control external test sets. The external test set bus
consists of 13 multiplexed address and data lines, three control lines, and an open-collector
interrupt line. The Test Set IO is not compatible with the 8753 test sets.
You can change the settings on the External Test Set IO connector through SCPI and COM
programming commands. The settings are NOT accessible through the front-panel keys or
display menu.

Caution: Do not mistake this connector with a Parallel Printer port. A printer may be damaged if
connected to this port.

Pin Name Description
1 SEL0 Test set select bit 0; tied to GND
2 Sweep

Holdoff In
TTL input - state may be read with SCPI or COM command

3 AD12 Address and latched data
4 AD10 Address and latched data
5 AD9 Address and latched data
6 AD8 Address and latched data
7 GND 0V
8 LAS TTL output Low = Address Strobe
9 AD4 Address and latched data
10 AD3 Address and latched data
11 AD2 Address and latched data
12 GND 0V
13 Interrupt In TTL input - state may be read with a SCPI or COM command
14 No connect CAUTION: Older PNAs have +22v on this line; this will damage a printer.
15 SEL1 Test set select bit 1; tied to GND
16 SEL2 Test set select bit 2; tied to GND
17 AD11 Address and latched data
18 SEL3 Test set select bit 3; tied to GND
19 AD7 Address and latched data
20 AD6 Address and latched data
21 AD5 Address and latched data
22 AD0 Address and latched data
23 AD1 Address and latched data
24 LDS TTL output - active low data strobe

491

25 RLW TTL output - high-read, low write

SEL0-SEL3 (pins 1,15,16,18)
Description
Selects addresses of test sets that are "daisy chained" to this port. The select code is set to zero
at the PNA connector and is incremented by one as it goes through each successive external test
set. Therefore, the first test set in the chain has address zero and so on, for up to 16 test sets.
HW Details
Connected to ground inside the PNA.
Timing
None

Sweep Holdoff In (pin 2)
Description
Input line used by the test set for holding off a sweep. Holding off a sweep is one way of
introducing a delay that allows an external device to settle before the PNA starts taking data. You
must write a program that will query the line and perform the delay. The program needs to query
the line and keep PNA from sweeping while the line remains low. When a subsequent query
detects that the line went high the program would then trigger the PNA to start the sweep.
Use either Single or External trigger mode to control the PNA sweep.
HW Details
This pin has a series 215-ohms resistor followed by 4.7k-ohm pull-up and then an "ABT" TTL
buffered register.
Timing
This input is not latched by the PNA hardware. Therefore the input level must be held at the
desired state by the test set until it’s read by your program.

AD0-AD12 (pins 3-6, 9-11, 17, 19-23)
Description
Thirteen lines are used to output data addresses or input / output data. Several SCPI and COM
commands are available for reading and writing to these lines. You can choose to use commands
where the PNA provides the appropriate timing signals needed for strobing the addresses and
data. Or you can choose to control the timing signal directly. The timing signals are RLW, LAS
and LDS. If you decide to do direct control refer to the corresponding SCPI and COM command
details. Close attention to detail is needed to insure the desired results.
After a write command, lines AD0-AD12 are left in the state they were programmed. Default
setting for Mode is Read / Input).
After a read command, lines AD0-AD12 are left in input mode. While in this mode an external
test set attached to the IO is free to set the level on each line.
HW Details
Each of these I/O pins has a series 215-ohm resistor followed by 4.7k-ohm pull-up resistor.
Write/Read is implemented by an output tri-state TTL buffer / latch for latching and enabling write
data in parallel with a TTL input buffer for reading.
Timing
Output Address and data setup and hold times are 1us minimum.

492

Address & Data I/O Write

 Address & Data I/O Read - Data must be valid for 1us before and after strobe

GND (pins 7, 12)
Description
Two ground pins used as ground references by the test set.
HW Details
Connected to digital ground.
Timing
None.

LAS (Low Address Strobe) (pin 8)
Description
This line has two behaviors that are command dependent. Refer to the SCPI and COM
commands for further details.
In one behavior LAS is one of the lines used by the PNA to provide appropriate timing for writing
Address and Data to the Test Set. In this case LAS is controlled automatically by the PNA and is
intended to be used as the strobe for the Address. When LAS is low, lines AD0 - AD12 represent
the Address. LAS will return to its normally high state when the transaction is finished.
In the second behavior the PNA will NOT provide appropriate timing. In this case LAS is
controlled directly by the user through a SCPI or COM command. When the transaction is
finished LAS is left set to the state it was programmed to until another command changes it.
(Default for LAS is TTL High).
HW Details
This output pin is driven by a TTL latched buffer with a series 215-ohm resistor followed by 2.15k-
ohm pull-up.
Timing
Strobe length, setup and hold times are all 1us minimum.

493

See the description for AD0-AD12 for more timing information.

Interrupt In (pin 13)
Description
Query this line with a SCPI or COM command.
HW Details
This line is a non-latched TTL input, has series 215-ohms followed by 4.64k-ohm pullup.
Timing
The Test Set must maintain at the desired TTL level until its read.

(pin 14) No Connect (previously +22V)

WARNING: Early versions of the PNA had +22v on this pin. Connecting a printer to this port
will usually damage the printer.

Description
+22V, 100mA max. The 25-pin D connector is the same as a computer parallel printer port
connector. Pin (14) corresponds to a printer’s "autofeed" line. Connecting a printer to this port
will damage the printer if +22v is present since printers requires less than 5V on all control
lines.
HW Details
No connect
Timing
None

LDS (Low Data Strobe) (pin 24)
Description
This line has two behaviors that are command dependent. Refer to the External Test Set IO SCPI
and COM commands for further details. (Default setting for LDS is TTL High)
In one behavior LDS is one of lines used by the PNA to provide appropriate timing for writing
Address and Data to the Test Set. In this case LDS is controlled automatically by the PNA and is
intended to be used as the strobe for the Data. When LDS is low, lines AD0 - AD12 represents
Data. LDS will return to its normally high state when the transaction is finished.
In the second behavior the PNA will NOT provide appropriate timing. In this case LDS is
controlled directly by the user through a SCPI or COM command. When the transaction is
finished the LDS is left set to the state it was programmed to.
HW Details
This output pin is driven by a TTL latched buffer with a series 215-ohm resistor followed by 2.15k-
ohm pull-up.
 Timing
Strobe length, setup and hold times are all 1us minimum.
See the description for AD0-AD12 for more timing information.

RLW (pin 25)
Description
This line is the output for the Read Write signal. It has two behaviors that are command
dependent. Refer to the External Test Set IO SCPI and COM commands for further details.
(Default setting for RLW is TTL High)

494

In one behavior RWL is controlled automatically by the PNA during a Read Write operation.
When RLW is low, lines AD0 - AD12 represent output Data. When RLW is high, the lines
represent input Data.
In the second behavior the PNA does NOT provide the timing. The user must control it directly
through the SCPI or COM command. In this case the line is left set to the state it was
programmed to.
 HW Details
This pin is a TTL latched output with a series 215-ohm resistor followed by 2.15k-ohm pull-up
resistor.
Timing
Strobe length, setup and hold times are all 1us minimum.
See the description for AD0-AD12 for more timing information.

Material Handler I/O Connector

General Description
This rectangular 36-pin female connector provides four independent parallel data ports, nine
control signal lines, one ground and a power supply line. All signals are TTL-compatible.
The data ports consist of two 8-bit output ports (Port A and Port B) and two 4-bit bidirectional
ports (Port C and Port D).
You can change the settings on the Material Handler IO connector through SCPI and COM
programming commands. The settings are NOT accessible through the front-panel keys or
display menu.
See SCPI and COM Commands

There are two Handler IO pinout configurations: Type 1 and Type 2.
• Type 1 - All RF PNA models (3 GHz, 6 GHz, and 9 GHz) are shipped from the factory

with Type 1 pinout configuration. You can change the pinout configuration to Type 2 on
these models. This requires opening the instrument and changing a connector internally.
Refer to the procedure in the Service Guide, Chapter 7. The Service Guide is available in
.pdf format on a CD that was shipped with every PNA.
 Caution: Changing this connection should be done by qualified service personnel.

• Type 2 - All PNA models EXCEPT 3 GHz, 6 GHz, and 9 GHz are shipped with Type 2
configuration and cannot be changed.

Type 1 Handler IO pin assignments
Pin Name Description
1 Ground 0 V
2 INPUT1 TTL in, negative pulse (1us min) latches OUPUT1 & 2
3 OUTPUT1 TTL out, latched
4 OUTPUT2 TTL out, latched
5 Output port A0 TTL out, latched
6 Output port A1 TTL out, latched
7 Output port A2 TTL out, latched
8 Output port A3 TTL out, latched
9 Output port A4 TTL out, latched
10 Output port A5 TTL out, latched

495

11 Output port A6 TTL out, latched
12 Output port A7 TTL out, latched
13 Output port B0 TTL out, latched
14 Output port B1 TTL out, latched
15 Output port B2 TTL out, latched
16 Output port B3 TTL out, latched
17 Output port B4 TTL out, latched
18 no connect
19 Output port B5 TTL out, latched
20 Output port B6 TTL out, latched
21 Output port B7 TTL out, latched
22 In/Out port C0 TTL in/out, latched
23 In/Out port C1 TTL in/out, latched
24 In/Out port C2 TTL in/out, latched
25 In/Out port C3 TTL in/out, latched
26 In/Out port D0 TTL in/out, latched
27 In/Out port D1 TTL in/out, latched
28 In/Out port D2 TTL in/out, latched
29 In/Out port D3 TTL in/out, latched
30 Port C Status TTL out, Low= Input mode, High=Output mode
31 Port D Status TTL out, Low= Input mode, High=Output mode
32 Output Port Write

Strobe
TTL out, active Low data write strobe (1us min)

33 Pass/Fail TTL out, latched, indicates pass/fail (programmable polarity)
34 Sweep End TTL out, active Low (10us min) indicates sweep done
35 +5V + 5 V, 100mA max.
36 Pass/Fail Write Strobe TTL out, active Low Pass/Fail write strobe (1us min)

Type 2 Handler IO pin assignments
Pin Name Description
1 Ground 0 V
2 INPUT1 TTL in, negative pulse (1us min) latches OUTPUT1 & 2
3 OUTPUT1 TTL out, latched
4 OUTPUT2 TTL out, latched
5 Output port A0 TTL out, latched
6 Output port A1 TTL out, latched
7 Output port A2 TTL out, latched
8 Output port A3 TTL out, latched
9 Output port A4 TTL out, latched
10 Output port A5 TTL out, latched
11 Output port A6 TTL out, latched
12 Output port A7 TTL out, latched
13 Output port B0 TTL out, latched
14 Output port B1 TTL out, latched
15 Output port B2 TTL out, latched
16 Output port B3 TTL out, latched
17 Output port B4 TTL out, latched
18 Output port B5 TTL out, latched
19 Output port B6 TTL out, latched
20 Output port B7 TTL out, latched
21 In/Out port C0 TTL in/out, latched
22 In/Out port C1 TTL in/out, latched
23 In/Out port C2 TTL in/out, latched
24 In/Out port C3 TTL in/out, latched
25 In/Out port D0 TTL in/out, latched

496

26 In/Out port D1 TTL in/out, latched
27 In/Out port D2 TTL in/out, latched
28 In/Out port D3 TTL in/out, latched
29 Port C Status TTL out, Low= Input mode, High=Output mode
30 Port D Status TTL out, Low= Input mode, High=Output mode
31 Output Port Write

Strobe
TTL out, active Low data write strobe (1us min)

32 no connect
33 Pass/Fail TTL out, latched, indicates pass/fail (programmable polarity)
34 +5 V + 5 V, 100mA max.
35 Sweep End TTL out, active Low (10us min) indicates sweep done
36 Pass/Fail Write Strobe TTL out, active Low Pass/Fail write strobe (1us min)

Input1 (pin 2)
Description
A TTL input pulse is used to strobe user defined settings into the OUTPUT1 and OUTPUT2 lines.
Latching occurs on the positive edge of INPUT1; minimum strobe length is 1us. Momentarily
forcing this input Low, then High, will strobe the user data to the Output lines.
HW Details
This input has a 215-ohm series resistor followed by 10k-ohm pullup, a 1000pF capacitor to
ground and a TTL buffer.
Timing
INPUT1 strobe length is 1us minimum.
OUTPUT1 and OUTPUT2 data is latched on the rising edge of INPUT1.

Output1, Output2 (pin3,4)
Description
The current state of these latched TTL outputs may be set High or Low (Default setting) using the
SCPI or COM commands.
The next state (following a positive edge on the INPUT1 line) may be pre-loaded to High or Low
(Default setting) using the commands.
HW Details
Looking back into these pins is a 215-ohm series resistor followed by 10k-ohm pullup, then the
output of a TTL driver.
Timing
See INPUT1 timing.

Output port A0-A7, B0-B7
Description
Two general purpose 8-bit latched TTL output ports.
This data is valid when Output Write Strobe goes Low.
The preset state for data is TTL Low.
The logic of these ports may be defined as positive or negative (Default setting)

497

HW Details
Looking back into these pins is a 215-ohm series resistor followed by a 10k-ohm pullup.
These lines are driven by TTL general purpose latches.
Timing
Data has minimum 1us setup and hold times relative to the Data Write Strobe.
See Output Port Write Strobe for timing information.

In/Out port C0-C3, D0-D3
Description
Two general purpose 4-bit TTL input/output ports. Each port may be independently defined as
either a 4-bit latched output port, or a 4-bit input port. The logic of these ports may be defined as
positive or negative (Default setting). The logic setting cannot be independently assigned.
The four lines of Port C are connected internally to the Auxiliary IO connector Port C. The mode
direction is not set automatically; it must be set by the user. The preset state for direction is
"Input".
Setup and hold times of these lines relative to the Output Port Write Strobe are 1us.
HW Details
Looking back into pin, there is a 215-ohm series resistor followed by a 10k-ohm pullup. A diode is
tied to +5V and ground for static protection.
These lines are driven by general purpose TTL latches and are read by general purpose TTL
buffers.
The four lines of Port C are connected internally between the Handler IO and the Auxiliary IO
connectors.
Timing
I/O Port output data is latched. Relative to the I/O Port Write Out strobe, the setup and hold times
are guaranteed to be a minimum of 1us. See Output Port Write Strobe for timing information

Port C Status, Port D status
Description
Latched TTL outputs indicate direction of the C and D ports. A Low level on the status line
indicates that the associated port is in the INPUT mode (read only).
A High level indicates the associated port is in OUTPUT mode (write only). These outputs are not
affected by the logic of the ports.
The status lines are set when the command that sets the port mode is sent.
HW Details
Looking back into these pins, there is a 215-ohm series resistor followed by a 10k-ohm pullup.
These lines are driven by general purpose TTL latches.
Timing
None.

Output Port Write Strobe
Description
Normally High, this TTL output goes Low (for minimum of 1us) to write data from the two 8-bit and
two 4-bit data ports on the Handler IO and In/Out Port C on the Auxiliary IO port. This line is not
affected by the port logic.
HW Details
Looking back into the pin is a series 215-ohm resistor followed by 10k-ohm pullup.
Connected to a TTL register output controlled by the analyzer.
Shared between the Handler IO and the Auxiliary IO.
Timing
Active low strobe; low for a minimum 1us.
Setup and Hold times relative to the I/O Port data lines are 1us minimum.

498

Pass/Fail (pin 33)
Description
Latched TTL output indicates whether the limit test has passed or failed. The Pass/Fail line is
valid when Pass/Fail strobe line is active low.
The logic levels may be set to the following using SCPI or COM commands:

• Positive Logic: High=Pass, Low=Fail. (Default setting)
• Negative Logic: High=Fail, Low=Pass.

The default state of the line may be set to the following using SCPI or COM commands:
• Default Pass No Wait mode: Pass/Fail line indicates a pass until a failure is detected, at

which time the output immediately indicates a failure. Pass/Fail line resets to "pass" when
the source has been reset and the receiver is ready to take new data. (Default setting)

• Default Pass Wait mode: Pass/Fail line indicates a pass until the measurement has
finished and all limits have been tested, at which time the output will indicate whether a
fail was detected. The Pass/Fail line is reset to "pass" when the source has been reset
and the receiver is ready to take new data.

• Default Fail mode: Pass/Fail line indicates a failure until the measurement has finished
and all limits have been tested, at which time the output will indicate whether a pass was
detected. The Pass/Fail line resets to "fail" when the source has been reset and the
receiver is ready to take new data.

The scope of the line may be set to the following using SCPI or COM commands:
• Channel scope: Pass/Fail line will have channel scope. The line resets to the default

state after the measurements on a channel have completed.
• Global scope: Pass/Fail line will have Global scope. The line resets to the default state

after the measurements on all triggerable channels have completed. (Default setting)
Pass/Fail output is active only when the limit test function is on. It is set to indicate a the default
condition when the limit test function is off.
HW Details
This line is shared between the Handler IO and the Auxiliary IO connector.
Looking into this pin there is a series 215-ohm resistor followed by a 10k pullup and is driven by a
TTL register.
Timing
The Pass/Fail Out state is valid for at least 1us before Pass/Fail Write Strobe is pulled Low.
The Pass/Fail Out state is valid for at least 1us after Pass/Fail Write Strobe is pulled High.
Pass/Fail Out is reset to its default state before the next measurement is started.

Pass/Fail Write Strobe will be Low for at least 1us.
If the network analyzer is in External Trigger mode, Pass/Fail Write Strobe will go High (invalid)
at least 1us before Ready for Trigger goes Low.

499

Pass/Fail (default "pass" mode, positive logic, no wait mode)

Pass/Fail (default "pass" mode, positive logic, end-of-measurement mode)

Pass/Fail (default "fail" mode, positive logic)

+5V
Description
+5V nominal output (100mA max).
Protected by self-healing fuse.

Sweep End
Description

500

Low TTL output (10us minimum) indicates that the specified sweep event has finished. High
output (10us minimum) indicates that the specified sweep event is active. The sweep event
includes sweeping the source and taking data.

The Sweep Event Mode may be set to the following using SCPI and COM commands:
• Sweep: indicates that a single source sweep has finished. (Default setting)
• Channel: indicates that a single channel has finished.
• Global: indicates that all enabled channels have finished.

HW Details
Looking into this pin, there is a 215-ohm series resistor followed by a 10k-ohm pullup. This line is
driven by a TTL register.
This line is shared between the Handler IO and the Auxiliary IO connectors.
Timing
Sweep End Out is guaranteed to be High while the sweep event is active. Its falling edge
indicates that the sweep event has finished and is usually low while the sweep event is inactive.
Sweep End Out is guaranteed to be Low for a minimum of 10us and High for a minimum of 10us.

Note: Sweep End = Low does not indicate that all calculations have finished.

Pass/Fail Write Strobe (pin 36)
Description
Active low TTL output strobe indicates that "Pass/Fail Out" is valid.
Relative to the "Pass/Fail Out" line, this strobe has a minimum setup, strobe length, and hold time
of 1us each.
The Pass/Fail Strobe is fixed in duration and timing. However, the occurrence of the strobe
depends on the Pass/Fail Mode and Pass/Fail Scope (Channel or Global) settings.
The Pass/Fail mode may be set to the following using SCPI and COM commands:
PASS- the line stays in PASS state. When a device fails, then the line goes to fail after the
Sweep End line is asserted.
FAIL- the line stays in FAIL state. When a device passes, then the line goes to PASS state after
the Sweep End line is asserted.
No Wait- the line stays in PASS state. When a device fails, then the line goes to fail
IMMEDIATELY.
HW Details
This line is shared between the Handler IO and the Auxiliary IO connectors.
Looking into this pin, there is a 215-ohm series resistor followed by a 10k pullup. This line is
driven by TTL logic.
Timing
The Pass/Fail Out state will be valid for at least 1us before Pass/Fail Write Strobe is pulled Low
(which indicates that Pass/Fail Out is valid).
The Pass/Fail Out state will be valid for at least 1us after Pass/Fail Write Strobe is pulled High.
Pass/Fail Write Strobe will be Low for at least 1us.
If the network analyzer is in "External Trigger" mode, Pass/Fail Write Strobe will go High (invalid)
at least 10us before "Ready for Trigger" goes Low.

501

See Pass/Fail output for more timing information.

8753 Command Cross Reference

Symbol Conventions

Symbol Description
<num> Required numerical data.
<a1| a2> An appendage that is part of the command.

For example, FORMAT<DOS|LIF> indicates
that the actual commands are FORMATDOS
and FORMATLIF.

<$> Indicates a character string operand which
must be enclosed by double quotes.

| An either/or choice in appendages or optional
data.

[] Optional data.
<LF> Line feed.

Description of Symbol Conventions
Legend

Indicates the most common of the network analyzer commands that have been mapped to a
corresponding command in PNA. Since the commands listed on this page are base
commands, commands that are derived from these base commands may not have a
corresponding command in PNA.

Indicates a command that has not been mapped to a corresponding command in PNA, but
may be in future revisions. However, this does not always indicate that the required
functionality does not exist in PNA. See the 8753 Programming Guide for a description of the
command functionality.

AB

ADAP1

ADDR

ADPT

ALC

ALTAB

ANAB

ANAI

AR

502

ASEG

ASSS

ATT

AUTO

AUXC

AVER

BACI

BANDPASS

BEEP

BLAD

BR

CAL1

CALF

CALI

CALK

CALN

CALSPORT

CALZ

CBRI

CENT

CHAN

CHOPAB

CLAD

CLASS

CLEA

CLEAL

CLEABIT

CLEASEQ

CLEL

CLES

CLS

COAD

COAX

COLO

COLOR

CONS

CONT

CONV

COPY

CORI

CORR

COU

CSWI

503

CWFREQ

CWTIME

D1DIVI2

D2XUPCH

D4XUPCH

DATI

DCONV

DEBU

DECRLOOC

DEFC

DEFLPRINT

DEFLTCPIO

DEFS

DEL

DELA

DEMO

DFLT

DIRS

DISC

DISM

DISP

DIVI

DONE

DONM

DOSEQ

DOWN

DUAC

DUPLSEQ

ECALAB?

ECALCONT

ECALDONE

ECALERC

ECALFREQS

ECALFUL2

ECALISOAVG

ECALMANTHRU

ECALMODID

ECALMODINF

ECALMODSELA

ECALMODSELB

ECALNFREQS

ECALOMII

ECALPAUSED

504

ECALRERC

ECALS11

ECALS22

EDIT

ELED

EMIB

ENTO

ERCDONE

ESB?

ESE

ESNB

ESR?

EXTD

EXTM

EXTRCHAN

EXTT

FIXE

FORM

FORMAT

FREQ

FREQOFFS

FRER

FLUP

FWD

GATE

GATS

GOSUB

HARM

HOLD

IDN?

IF

IFBW

IMAG

INCRLOOC

INI

INPU

INSM

INT

INTE

ISO

KEY

KITD

KOR?

505

LAB

LABE

LEF

LIM

LIMI

LIMT

LINFREQ

LINM

LINT

LIS

LISTTYPE

LISV

LO

LOA

LOAD

LOADSEQ

LOGFREQ

LOGM

LOOC

LOWP

LRN

MANTRIG

MARK

MAXF

MEAS

MEASTAT

MENU

MINF

MINMAX

MINU

MODI1

MODS

NEWSEQ

NEXP

NOOP

NUMG

NUMR

OF

OFS

OMII

OPC

OPEP

OUTP

506

PARA

PARAL

PAUS

PCB

PCOL

PENN

PHAO

PHAS

PLOS

PLOT

PLT

PMTRTTIT

POIN

POL

PORE

PORT

PORTP

POWE

POWL

POWM

POWR

POWS

POWT

PRAN

PREP

PRES

PRI

PRIN

PRINTALL

PRN

PTOS

PURG

PWMC

PWRLOSS

PWRMCAL

PWRR

RAI

RAWOFFS

READ

REAL

RECA

RECO

REF

507

REFT

REIC

RERCDONE

RESC

RESD

RESPDONE

REST

RETP

REV

RF

RFLP

RIG

RSCO

RST

S

SADD

SAMC

SAV

SAVE

SAVEUSEK

SAVU

SCAL

SCAP

SDEL

SDON

SEA

SEDI

SEG

SEL

SELL

SEQ

SEQWAIT

SET

SHOM

SING

SLI

SLOP

SM8

SMI

SMOO

SOFR

SOFT

SOUP

508

SPAN

SPEC

SPEG

SPLD

SPLID

SRE

SSEG

STAN

STAR

STB?

STDD

STDT

STEPSWP

STOP

STOR

STORSEQ

STPSIZE

SVCO

SWE

SWPSTART

SWR

TAK

TAKE4

TALKLIST

TESS?

TIMDTRAN

TIMESTAM

TINT

TIT

TITT

TRA

TRACK

TRAP

TRL

TSSWI

TST?

TSTIO

TSTP

TTL

UCONV

UP

USEPASC

USESENS

509

VELOFACT

VIEM

VOFF

WAIT

WAVD

WAVE

WID

WIND

WRSK

AB
8753 Command Description Range Query Response
AB Measures and

displays A/B on the
active channel.

N/A <0|1>><LF

PNA SCPI Equivalent - Notes
Step 1 CALC:PAR:DEFINE Create the measurement.
Step 2 DISP:WIND ON If a new window will be used to display the

measurement, then create a window.
Step 3 DISP:WIND:TRAC:FEED Display the measurement in the window.
PNA COM Equivalent - Notes
CreateMeasurement Method Create and display the measurement.

ADDR
8753 Command Description Range Query Response
ADDRPOWM Power Meter GPIB

address
Integers 0-30 <num>><LF>

PNA SCPI Equivalent - Notes
SYST:COMM:GPIB:PMET:ADDR Specifies the GPIB address of the power

meter to be used in a source power
calibration.

PNA COM Equivalent - Notes
PowerMeterGPIBAddress Property Specifies the GPIB address of the power

meter that will be referenced by the
SourcePowerCalibrator object

ALTAB
8753 Command Description Range Query Response
ALTAB Places the analyzer

in the alternate inputs
measurement mode,
where A and B
measurements are
made on alternate
sweeps. See also
"CHOPAB."

N/A <0|1>><LF

PNA SCPI Equivalent - Notes
SENS:COUP ALL Sets sweeps to either alternate or chopped.
PNA COM Equivalent - Notes
AlternateSweep Property Sets sweeps to either alternate or chopped.

510

ANAI
8753 Command Description Range Query Response
ANAI Measures and

displays the data at
the Auxiliary Input
(Analog IN

Integers 1-31 <0|1>><LF

PNA SCPI Equivalent - Notes
CONT:AUX:INP Reads the ADC input voltage from pin 14 of

the AUX IO connector.
PNA COM Equivalent - Notes
get InputVoltage Method Reads the ADC input voltage from pin 14 of

the AUX IO connector.

AR
8753 Command Description Range Query Response
AR Measures and

displays A/R on the
active channel.

N/A <0|1>><LF

PNA SCPI Equivalent - Notes
Step 1 CALC:PAR:DEFINE Create the measurement.
Step 2 DISP:WIND If a new window will be used to display the

measurement, then create a window.
Step 3 DISP:WIND:TRAC:FEED Display the measurement in the window.
PNA COM Equivalent - Notes
CreateMeasurement Method Create and display the measurement.

ASEG
8753 Command Description Range Query Response
ASEG Uses all segments for

list frequency sweep.
See also "SSEG".

N/A <0|1>><LF

PNA SCPI Equivalent - Notes
SENS:SEGM Turn on each segment to be used with list

frequency sweep.
PNA COM Equivalent - Notes
LimitSegment Object LimitSegment object.

ATT
8753 Command Description Range Query Response
ATTP1><num>[DB] Selects the amount of

attenuation at PORT
1.

0–70 dB <num><LF

ATTP2><num>[DB] Selects the amount of
attenuation at PORT
2.

0–70 dB <num><LF

Note: These
commands only apply
to 8753ES Option
011 analyzers.

PNA SCPI Equivalent - Notes
Step 1 SOUR:POW:COUP Set Port Power Coupling OFF.
Step 2 SOUR:POW:ATT Set the attenuation level for the selected port.
PNA COM Equivalent - Notes

511

Step 1 Couple Ports Property Set Port Power Coupling OFF.
Step 2 Attenuator Property Set the attenuation level for the selected port.

AUTO
8753 Command Description Range Query Response
AUTO Auto scale the active

channel.
N/A N/A

PNA SCPI Equivalent - Notes
DISP:WIND:TRAC:Y:AUTO Auto scale on the specified trace in the

specified window.
PNA COM Equivalent - Notes
Autoscale Method Auto scales the trace or all of the traces in the

selected window.

AVER
8753 Command Description Range Query Response
AVERREST Restarts the

averaging on the
active channel.

N/A N/A

AVERFACT<num> Sets the averaging
factor on the active
channel.

integers 0–999 <num><LF

AVERO<ON|OFF> Turns averaging on
and off on the active
channel.

N/A <0|1>><LF

PNA SCPI Equivalent - Notes
SENS:AVER:CLE Restart averaging.
SENS:AVER:COUN Read-Write the averaging factor.
SENS:AVER Read-Write averaging ON or OFF.
PNA COM Equivalent - Notes
Averaging Restart Method Restart averaging.
Averaging Factor Property Read-Write the averaging factor.
Averaging Property Read-Write averaging ON or OFF.

BLAD
8753 Command Description Range Query Response
BLAD<ON|OFF> Blanks the display. N/A <0|1>><LF
PNA SCPI Equivalent - Notes
DISP:ENAB Blanks the display information in all windows.
DISP:WIND:ENABle Blanks the display information in a specified

window.
PNA COM Equivalent - Notes
Visible Property Makes the Network Analyzer application

visible or not visible.

BR
8753 Command Description Range Query Response

512

BR Measures and
displays B/R on the
active channel.

N/A <0|1>><LF

PNA SCPI Equivalent - Notes
Follow the steps below to create and display a
measurement.

Step 1 CALC:PAR:DEF Create the measurement.
Step 2 DISP:WIND If a new window will be used to display the

measurement, then create a window.
Step 3 DISP:WIND:TRAC:FEED Display the measurement in the window.
PNA COM Equivalent - Notes
CreateMeasurementMethod Create and display the measurement.

CALF
8753 Command Description Range Query Response
CALFCALF Sets the power meter

sensor calibration
factor.

0200% <num><L F >

CALFSEN<A|B> Edits a apecified
power sensor
calibration table

<N/A> <N/A>

PNA SCPI Equivalent - Notes
SOUR:POW:CORR:COLL:TABL:DATA (Read-Write) Read or write data into the

selected table. If the selected table is a power
sensor table, the data is interpreted as cal
factors in units of percent. If the loss table is
selected, the data is interpreted as loss in
units of dB.

SOUR:POW:CORR:COLL:TABL Selects which table (cal factor table for a
power sensor, or the loss compensation table)
you want to write to or read from.

PNA COM Equivalent - Notes
CalFactor Property Sets or returns the cal factor value associated

with a power sensor cal factor segment.
CalFactorSegments Collection
PowerLossSegments Collection

Access the appropriate table in either
collection.

CALI

CALIERC
CALIRERC
CALIFUL2
CALIRAI
CALIRESP
CALIS111
CALIS221
CALITRL2

8753 Command Description Range Query Response
CALIFUL2 Begins the sequence

for a short, load,
open, thru (SLOT) 2-

N/A <0|1><LF>

513

port calibration.
CALIRAI Begins the sequence

for a response and
isolation calibration.

N/A <0|1><LF>

CALIRESP Begins the sequence
for a response
calibration.

N/A <0|1><LF>

CALIS111 Begins the sequence
for an S11 1-port
calibration (ES
models), or a
reflection 1-port
calibration (ET
models).

N/A <0|1><LF>

CALIS221 Begins the sequence
for an S22 1-port
calibration.

N/A <0|1><LF>

CALITRL2 Begins the sequence
for a thru, reflect, line
or line, reflect, match
(TRL*/LRM*) 2-port
calibration.

N/A <0|1><LF>

PNA SCPI Equivalent - Notes
SENS:CORR:COLL:CKIT If a calibration kit is not selected, select a

calibration kit.
SENS:CORR:COLL Measure the specified standard from the

selected calibration kit.
PNA COM Equivalent - Notes
CalKitType Property If a calibration kit is not selected, select a

calibration kit.
AcquireCalStandard2 Method Measure the specified standard from the

selected calibration kit.

8753 Command Description Range Query Response
CALIERC Begins the sequence

for a forward
enhanced response
calibration.

N/A <0|1><LF>

CALIRERC Begins the sequence
for a reverse
enhanced response
calibration.

N/A <0|1><LF>

Notes
These commands currently are not available.

CALK
8753 Command Description Range Query Response
CALK24MM Selects a 2.4-mm

calibration kit
(85056A/D) as the
default cal kit.

N/A <0|1>><LF

CALK292MM Selects a 2.92-mm
calibration kit as the

N/A <0|1>><LF

514

default cal kit.
CALK292S Selects a 2.92*

calibration kit
(85056K) as the
default cal kit.

N/A <0|1>><LF

CALK35MD Selects a 3.5-mm
calibration kit
(85052B/D for 8720E
series analyzers, and
85033D for
8753ET/ES
analyzers) as the
default cal kit.

N/A <0|1>><LF

CALK35MC Selects a 3.5-mm
calibration kit
(85033C) as the
default cal kit.
CALK35MM selects
the 85033C cal kit for
the 8752C and
8753D analyzers.

N/A <0|1>><LF

CALK716 Selects a 7-16
calibration kit (85038)
as the default cal kit.

N/A <0|1>><LF

CALK7MM Selects a 7-mm
calibration kit (85050
series for 8720E
series analyzers, and
85031B for
8753ET/ES
analyzers) as the
default cal kit.

N/A <0|1>><LF

CALKN50 Selects a type-N 50
ohm calibration kit
(85054 for 8720E
series analyzers, and
85032B/E for
8753ET/ES
analyzers) as the
default cal kit.

N/A <0|1>><LF

CALKN75 Selects a type-N 75
ohm calibration kit
(85036B/E) as the
default cal kit.

N/A <0|1>><LF

CALKTRLK Selects a TRL 3.5-
mm calibration kit
(85052C) as the
default cal kit.

N/A <0|1>><LF

CALKUSED Selects a user-
defined calibration kit.

N/A <0|1>><LF

PNA SCPI Equivalent - Notes
SENS:CORR:COLL:CKIT Select the appropriate calibration kit. If the

specific calibration kit is not listed, one can be
created and stored in the User Defined
section.
3 = CALKN50

515

4 = CALK35MD
5 = CALK716
6 = CALKTRLK

PNA COM Equivalent - Notes
CalKitType Property Specifies the type of calibration kit to use in

the calibration process.

CALN
8753 Command Description Range Query Response
CALN Turns calibration type

to "off." See also
"CORR."

N/A <0|1>><LF

PNA SCPI Equivalent - Notes
SENS:CORR:COLL:METH REFL1 Read-Write the calibration method. Set to

"NONE" to turn calibration off.
PNA COM Equivalent - Notes
CalibrationType_Property Specifies and returns the type of calibration to

be applied to the measurement. Set to
"NONE" to turn calibration off.

CENT
8753 Command Description Range Query Response
CENT<num>[HZ|DB] Sets the center

stimulus value. If a
list frequency
segment is being
edited, sets the
center of the list
segment.

For frequency or
power sweeps, refer
to "Preset State and
Memory Allocation,"
in your analyzers
users guide. For CW
time: 0 to 24 hours.
For frequency sweep,
transform on: ±
1/frequency step. For
CW time sweep,
transform on: ±1/time
step.

<num><LF

PNA SCPI Equivalent - Notes
SENS:FREQ:CENT To set the center frequency value.
SENS:SEGM:FREQ:CENT To set the center frequency value for a

segment.
PNA COM Equivalent - Notes
CenterFreq_Property Read-Write the center frequency of all

measurements in a channel or for a specified
sweep segment.

CHAN
8753 Command Description Range Query Response
CHAN1 Makes channel 1 the

active channel.
OPC-compatible.

N/A N/A

CHAN2 Makes channel 2 the
active channel.
OPC-compatible.

N/A N/A

CHAN3 Makes channel 3 the N/A N/A

516

active channel.
OPC-compatible.

CHAN4 Makes channel 4 the
active channel.
OPC-compatible.

N/A N/A

Notes
Unlike the 8753 network analyzer, the PNA
Series Network Analyzers do not need a
separate channel to display each parameter.
While the PNA Series has four independent
measurement channels, only one channel is
needed to display all four measurement
parameters. In addition, up to four windows
are available to view four active and four
memory traces per window.

CHOPAB
8753 Command Description Range Query Response
CHOPAB Places the analyzer

in the chop
measurement mode.
See also "ALTAB."

N/A <0|1>><LF

PNA SCPI Equivalent - Notes
SENS:COUP ALL Read-Write the sweep mode as Chopped or

Alternate.
PNA COM Equivalent - Notes
Alternate_Sweep_Property Read-Write the sweep mode as Chopped or

Alternate.

CLASS
8753 Command Description Range Query Response
CLASS11A S11A: S11 (forward

reflection) 1-port,
open

N/A N/A

CLASS11B S11B: S11 (forward
reflection) 1-port,
short

N/A N/A

CLASS11C S11C: S11 (forward
reflection) 1-port,
load

N/A N/A

CLASS22A S22A: S22 (reverse
reflection) 1-port,
open

N/A N/A

CLASS22B S22B: S22 (reverse
reflection) 1-port,
short

N/A N/A

CLASS22C S22C: S22 (reverse
reflection) 1-port,
load

N/A N/A

PNA SCPI Equivalent - Notes
SENS:CORR:COLL Measure the specified standard from the

selected calibration kit.
PNA COM Equivalent - Notes
AcquireCalStandard2_Method Measure the specified standard from the

517

selected calibration kit.

CLEAL
8753 Command Description Range Query Response
CLEAL Clears the limit line

list. Should be
preceded by
EDITLIML.

N/A N/A

PNA SCPI Equivalent - Notes
CALC:LIM:DATA Limit lines always remain in memory. Use this

SCPI command to set limit segment OFF or
make a new limit line.

PNA COM Equivalent - Notes
Delete_Method Delete the limit test collection.

CLEL
8753 Command Description Range Query Response
CLEL Clears the currently

selected list. This
could be a frequency
list, power loss list, or
limit test list. Must be
preceded by an
"EDIT" command.

N/A N/A

PNA SCPI Equivalent - Notes
SENS:SEGM:DEL Clear a single sweep segment.
SENS:SEGM:DEL:ALL Clear all sweep segments.
PNA COM Equivalent - Notes
Remove_Method Removes an item from a collection of objects.

CLES
8753 Command Description Range Query Response
CLES Clears the status byte

register, the event-
status registers, and
the enable registers.
Same as CLS.

N/A N/A

PNA SCPI Equivalent - Notes
*CLS - Clear Status Clears the instrument status byte by emptying

the error queue and clearing all event
registers.

PNA COM Equivalent - Notes
No equivalent command at present.

CLS
8753 Command Description Range Query Response
CLS Clears the status byte

register, the event-
status registers, and
the enable registers.
Same as CLES.

N/A N/A

PNA SCPI Equivalent - Notes
*CLS - Clear Status Clears the instrument status byte by emptying

518

the error queue and clearing all event
registers. Replace "CLS" with "*CLS".

PNA COM Equivalent - Notes
No equivalent command at present.

CONT
8753 Command Description Range Query Response
CONT Places the analyzer

in continuous sweep
trigger mode.

N/A <0|1>><LF

PNA SCPI Equivalent - Notes
INIT:CONT Read-Write the sweep triggering mode.
PNA COM Equivalent - Notes
Continuous_Method Read-Write the sweep triggering mode.

CORI
8753 Command Description Range Query Response
CORI<ON|OFF> Turns interpolative

error correction on
and off.

N/A <0|1>><LF

PNA SCPI Equivalent - Notes
SENS:CORR:INT Read-Write correction interpolation ON or

OFF.
PNA COM Equivalent - Notes

No equivalent command at present.

CORR
8753 Command Description Range Query Response
CORR<ON|OFF> Turns error correction

on and off.
N/A <0|1>><LF

PNA SCPI Equivalent - Notes
SENS:CORR Read-Write whether or not correction data is

applied to the measurement.
PNA COM Equivalent - Notes
Error_Correction_Property Sets (or returns) error correction ON or OFF

CWFREQ
8753 Command Description Range Query Response
CWFREQ<num>[HZ|
DB]

Sets the CW
frequency for power
sweep and CW
frequency modes.
While the list
frequency table
segment is being
edited, it sets the
center frequency of
the current segment.
See also
"MARKCENT."

For frequency or
power sweeps, refer
to "Preset State and
Memory Allocation,"
in the analyzers
users guide. For CW
time: 0 to 24 hours.
For frequency sweep,
transform on:
±1/frequency step.
For CW time sweep,
transform on: ±1/time
step.

<num><LF

PNA SCPI Equivalent - Notes

519

SENS:FREQ Read-Write the Continuous Wave (or Fixed)
frequency.

PNA COM Equivalent - Notes
CW_Frequency_Property CW Frequency property.

CWTIME
8753 Command Description Range Query Response
CWTIME Selects CW time as

the sweep type.
N/A <0|1>><LF

PNA SCPI Equivalent - Notes
SENS:SWE:TYPE Read-Write the type of analyzer sweep mode.
PNA COM Equivalent - Notes
Sweep_Type_Property Sets the type of X-axis sweep that is

performed on a channel.

DATI
8753 Command Description Range Query Response
DATI Stores the data trace

in channel memory.
OPC-compatible.

N/A N/A

PNA SCPI Equivalent - Notes
CALC:MATH MEM Write-only the currently selected

measurement trace into memory.
PNA COM Equivalent - Notes
DataToMemory_Method Stores the active measurement into memory.

DEL
8753 Command Description Range Query Response
DELO Turns delta marker

mode off.
N/A <0|1>><LF

PNA SCPI Equivalent - Notes
CALC:MARK:DELT Read-Write whether marker is relative to the

reference or not.
PNA COM Equivalent - Notes

No equivalent command at present.

8753 Command Description Range Query Response
DELR<num> Makes the indicated

marker the delta
reference.

Integers 15 <0|1>><LF

DELRFIXM Makes the fixed
marker the delta
reference.

N/A <0|1>><LF

PNA SCPI Equivalent - Notes
Step 1 CALC:MARK:REF If the reference marker is not turned ON, use

this command to set the reference marker to
ON.

Step 2 CALC:MARK:REF:X Set the reference marker to the correct
position.

Step 3 CALC:MARK:DELT Turn marker delta mode ON for the marker
that will report the delta value measured from

520

the reference marker.
PNA COM Equivalent - Notes

No equivalent command at present.

DELA
8753 Command Description Range Query Response
DELA Displays the data

formatted as group
delay.

N/A <0|1>><LF

PNA SCPI Equivalent - Notes
CALC:FORM MLIN Read-Write the display format for the

measurement.
PNA COM Equivalent - Notes
Format_Property Sets (or returns) the display format of the

measurement.

DISP
8753 Command Description Range Query Response
DISPDATA Data only. N/A <0|1>><LF
DISPDATM Data and memory. N/A <0|1>><LF
DISPDDM Data divided by

memory (linear
division, log
subtraction). See also
"DIVI."

N/A <0|1>><LF

DISPDMM Data minus memory
(linear subtraction).
See also "MINU."

N/A <0|1>><LF

DISPMEMO Memory only. N/A <0|1>><LF
PNA SCPI Equivalent - Notes
CALC:MATH:FUNC Read-Write math operations on the currently

selected measurement and the trace stored in
memory.

PNA COM Equivalent - Notes
Trace_Math_Property Performs math operations on the

measurement object and the trace stored in
memory.

DIVI
8753 Command Description Range Query Response
DIVI Data divided by

memory (linear
division, log
subtraction). See also
"DISPDDM."

N/A <0|1>><LF

PNA SCPI Equivalent - Notes
CALC:MATH:FUNC Read-Write math operations on the currently

selected measurement and the trace stored in
memory.

PNA COM Equivalent - Notes
Trace_Math_Property Performs math operations on the

measurement object and the trace stored in
memory.

521

DONE
8753 Command Description Range Query Response
DONE Done with a class of

standards, during a
calibration. Only
needed when
multiple standards
are measured to
complete the class.

N/A N/A

Notes
Since this action is performed automatically in
PNA, this command is no longer necessary.

ECALAB?
8753 Command Description Range Query Response
ECALAB Queries the analyzer

for the currently
selected module

N/A <0|1><LF

PNA SCPI Equivalent - Notes
No equivalent command at this time

PNA COM Equivalent - Notes
IsECALModuleFound Property Tests communication between the PNA and

the specified ECal module.

ECALDONE
8753 Command Description Range Query Response
ECALDONE Designed to be used

in a polling loop to
determine if the
ECAL operation is
finished.

N/A N/A

PNA SCPI Equivalent - Notes
1. SENS:CORR:COLL:ACQ ECAL<A|B> Measures the ECAL A module
2. *OPC? Operation Complete query
PNA COM Equivalent - Notes

COM methods do not return until the cal is
complete

ECALFUL2
8753 Command Description Range Query Response
ECALFUL2 Performs an full 2-

port ECAL
N/A <0|1><LF>

PNA SCPI Equivalent - Notes
1. SENS:CORR:COLL:METH SPARSOLT Sets the calibration method to SOLT
2. SENS:CORR:COLL:ACQ ECAL<A|B> Measures the ECAL module
PNA COM Equivalent - Notes
DoECAL2Port Method Does a 2-Port calibration using an ECAL

module.

ECALISOAVG
8753 Command Description Range Query Response

522

ECALISOAVG Sets the number of
averages in the
ECAL isolation
averages function

1-999 <num><LF>

PNA SCPI Equivalent - Notes
SENS:AVER:COUN Sets the number of measurement sweeps to

combine for an average.
PNA COM Equivalent - Notes
Averaging Factor Property Specifies the number of measurement

sweeps to combine for an average

ECALMODINF
8753 Command Description Range Query Response
ECALMODINF Returns string

information on the
selected ECAL
module.

N/A <array><LF>

PNA SCPI Equivalent - Notes
No equivalent command at this time

PNA COM Equivalent - Notes
Get ECAL Module Info Method Returns the following information about the

connected ECAL module: model number,
serial number, connector type, calibration
date, min and max frequency.

ECALOMII
8753 Command Description Range Query Response
ECALOMII Set omit isolation ON

or OFF
N/A <0|1><LF

PNA SCPI Equivalent - Notes
SENS:CORR:ISOL Turns isolation cal ON or OFF during Full 2-

port (or ECAL) calibration.
PNA COM Equivalent - Notes
ECALIsolation Property Specifies whether the acquisition of the ECal

calibration should include isolation or not.

ECALS11
8753 Command Description Range Query Response
ECALS11 Performs a S11

ECAL
N/A N/A

PNA SCPI Equivalent - Notes
1. SENS:CORR:COLL:METH REFL3 Sets the calibration method to 1-port
2. SENS:CORR:COLL:ACQ ECAL<A|B> Measures the ECAL module
PNA COM Equivalent - Notes
DoECAL1Port Method Does a 1-Port calibration using an ECAL

module.

ECALS22
8753 Command Description Range Query Response
ECALS22 Performs a S22

ECAL
N/A N/A

PNA SCPI Equivalent - Notes

523

1. SENS:CORR:COLL:METH REFL3 Sets the calibration method to 1-port
2. SENS:CORR:COLL:ACQ ECAL<A|B> Measures the ECAL module
PNA COM Equivalent - Notes
DoECAL1Port Method Does a 1-Port calibration using an ECAL

module.

EDIT
8753 Command Description Range Query Response
EDITDONE Done editing list

frequency, limit table,
cal sensor table, or
power loss list.

N/A N/A

EDITLIML Begins editing limit
table.

N/A N/A

EDITLIST Begins editing list
frequency table.

N/A N/A

Notes
Since these actions are performed
automatically in PNA when working with a
limit table, these commands are no longer
necessary.

ELED
8753 Command Description Range Query Response
ELED<num>[S] Sets the electrical

delay offset.
±10 seconds <num><LF

PNA SCPI Equivalent - Notes
CALC1:CORR:EDEL:TIME Read-Write the electrical delay for the

selected measurement.
PNA COM Equivalent - Notes
Electrical_Delay_Property Sets the Electrical Delay

ESE
8753 Command Description Range Query Response
ESE<num> Enables the selected

event-status register
bits to be
summarized by bit 5
in the status byte. An
event-status register
bit is enabled when
the corresponding bit
in the operand
<num> is set.

integers 0255 <num><LF

PNA SCPI Equivalent - Notes
*ESE Sets bits in the standard event status enable

register. Replace "ESE" with "*ESE".
PNA COM Equivalent - Notes

No equivalent command at present.

ESR?
8753 Command Description Range Query Response

524

ESR? Query only. Outputs
event-status register.

N/A <num><LF

PNA SCPI Equivalent - Notes
*ESR Returns the results of the standard event

enable register. The register is cleared after
reading it. Replace "ESR?" with "*ESR?".

PNA COM Equivalent - Notes
No equivalent command at present.

EXTM
8753 Command Description Range Query Response
EXTMDATA Adds error corrected

data (real and
imaginary pairs)
along with the other
files.

N/A <0|1>><LF

EXTMDATO Selected data arrays
only (real and
imaginary pairs),
without instrument
states or calibrations.
Always saves the
data array, even if it
hasnt been selected.

N/A <0|1>><LF

EXTMFORM Formatted trace data.
Uses currently
selected format for
data.

N/A <0|1>><LF

EXTMRAW Raw data arrays (real
and imaginary pairs).

N/A <0|1>><LF

PNA SCPI Equivalent - Notes
CALC:DATA:CUST Read-Write either measurement data or

memory data.
PNA COM Equivalent - Notes
Get_Data_Method Retrieves data.

8753 Command Description Range Query Response
EXTMGRAP User graphics. N/A <0|1>><LF
PNA SCPI Equivalent - Notes

No equivalent command at present.
PNA COM Equivalent - Notes
PrintToFile_Method Saves the screen data to bitmap (.bmp) file of

the screen.

EXTT
8753 Command Description Range Query Response
EXTT Activates or

deactivates the
external trigger
mode. OPC-
compatible.

N/A <0|1>><LF

EXTTPOIN Sets the external
trigger to auto-trigger
on point. OPC-

N/A <0|1>><LF

525

compatible.
PNA SCPI Equivalent - Notes
TRIG:SOUR Read-Write the source of the sweep trigger

signal.
SENS:SWE:TRIG:POIN Read-Write whether the specified channel will

measure one point when triggered or all of the
measurements in the channel.

PNA COM Equivalent - Notes
Trigger_Signal_Property Sets or returns the trigger source.
Trigger_Mode_Property Determines the measurement that occurs

when a trigger signal is sent to the channel.

8753 Command Description Range Query Response
EXTTHIGH Sets the external

trigger line high.
N/A N/A

EXTTLOW Sets the external
trigger line low.

N/A N/A

PNA SCPI Equivalent - Notes
No equivalent command at present.

PNA COM Equivalent - Notes
No equivalent command at present.

FORM
8753 Command Description Range Query Response
FORM1 The analyzer’s

internal binary format,
6 bytes-per-data
point. The array is
preceded by a four-
byte header. The first
two bytes represent
the string "#A", the
standard block
header. The second
two bytes are an
integer representing
the number of bytes
in the block to follow.
FORM1 is best
applied when rapid
data transfers, not to
be modified by the
computer nor
interpreted by the
user, are required.

N/A N/A

FORM2 IEEE 32-bit floating-
point format, 4 bytes-
per-number, 8 bytes-
per-data point. The
data is preceded by
the same header as

N/A N/A

526

in FORM1. Each
number consists of a
1-bit sign, an 8-bit
biased exponent, and
a 23-bit mantissa.
FORM2 is the format
of choice if your
computer is not a PC,
but supports single-
precision floating-
point numbers.

FORM3 IEEE 64-bit floating-
point format, 8 bytes-
per-number, 16
bytes-per-data point.
The data is preceded
by the same header
as in FORM1. Each
number consists of a
1-bit sign, an 11-bit
biased exponent, and
a 52-bit mantissa.
This format may be
used with double-
precision floating-
point numbers. No
additional precision is
available in the
analyzer data, but
FORM3 may be a
convenient form for
transferring data to
your computer.

N/A N/A

FORM4 ASCII floating-point
format. The data is
transmitted as ASCII
numbers. There is no
header. The analyzer
always uses FORM4
to transfer data that is
not related to array
transfers (i.e. marker
responses and
instrument settings).
Data is comma
delimited.

N/A N/A

FORM5 PC-DOS 32-bit
floating-point format
with 4 bytes-per-
number, 8 bytes-per-
data point. The data
is preceded by the
same header as in
FORM1. The byte
order is reversed with
respect to FORM2 to

N/A N/A

527

comply with PC-DOS
formats. If you are
using a PC-based
controller, FORM5 is
the most effective
format to use.

PNA SCPI Equivalent - Notes
FORM1, the 8753 analyzer’s internal binary
format, is not compatible with PNA.

format:data For FORM2, FORM3, and FORM4, use this
SCPI command.

Step 1 format:data For FORM5, format the data to 32-bit with the
SCPI command in Step 1. Then, swap the
bits with the SCPI command in Step 2.

Step 2 format:border
PNA COM Equivalent - Notes

No equivalent command at present.

FRER
8753 Command Description Range Query Response
FRER Places the analyzer

in GPIB free run
mode. (Same as
continuous sweep
trigger mode.) See
"CONT."

N/A <0|1>><LF

PNA SCPI Equivalent - Notes
initiate:continuous Read-Write the sweep triggering mode.
PNA COM Equivalent - Notes
Continuous_Method Read-Write the sweep triggering mode.

FWD
8753 Command Description Range Query Response
FWDI Selects the forward

isolation calibration
class during a 2-port
calibration sequence.

N/A N/A

PNA SCPI Equivalent - Notes
SENS:CORR:COLL Measure the specified standard from the

selected calibration kit. See "STAN5".
PNA COM Equivalent - Notes
AcquireCalStandard2_Method Measure the specified standard from the

selected calibration kit.

8753 Command Description Range Query Response
FWDM Selects the forward

match calibration
class during a 2-port
calibration sequence.

N/A N/A

FWDT Selects the forward
transmission
calibration class
during a 2-port

N/A N/A

528

calibration sequence.
Notes

Both the forward match and the forward
transmission are measured automatically
during a 2-port calibration on the PNA Series
Network Analyzers.

HOLD
8753 Command Description Range Query Response
HOLD Puts the sweep

trigger into hold
mode.

N/A <0|1>><LF

PNA SCPI Equivalent - Notes
initiate:continuous Read-Write the sweep triggering mode. Set

the sweep trigger mode to "OFF".
PNA COM Equivalent - Notes
Hold_Method Put the sweep trigger into hold mode.

IDN?
8753 Command Description Range Query Response
IDN? Query only. Outputs

the identification
string: AGILENT
TECHNOLOGIES
,87NNEX,xxxxxxxxxx
,X.XX where
87NNEX is the model
number of the
instrument,
xxxxxxxxxx is the
serial number of the
instrument, and X.XX
is the firmware
revision of the
instrument.

N/A See command
description.

PNA SCPI Equivalent - Notes
*IDN? Returns a string that uniquely identifies the

analyzer. Replace "IDN?" with "*IDN?".
PNA COM Equivalent - Notes
Application_Property Returns the name of the Analyzer making

measurements on the channel.

IF
8753 Command Description Range Query Response
IFBIHIGH
IFBILOW

Tests the specified
GPIO bit. If HIGH /
LOW invokes the
sequence which
follows.

N/A N/A

PNA SCPI Equivalent - Notes
CONT:AUX:PASS:LOG Sets the logic of the PassFail line (pin 12) on

the AUX IO connector. This line is connected

529

internally to the PassFail line of the Material
Handler IO (pin 33).

PNA COM Equivalent - Notes
PassFailLogic Property Sets the logic of the PassFail line (pin 12) on

the AUX IO connector. This line is connected
internally to the PassFail line of the Material
Handler IO (pin 33).

IFBW
8753 Command Description Range Query Response
IFBW<num>[HZ] Sets the IF

bandwidth.
Choose from 10, 30,
100, 300, 1000,
3000, 3700, 6000

<num><LF

PNA SCPI Equivalent - Notes
SENS:BWID Read-Write the bandwidth of the digital IF

filter to be used in the measurement.
PNA COM Equivalent - Notes
IF_Bandwidth_Property Sets or returns the IF Bandwidth of all

measurements in a channel.

IMAG
8753 Command Description Range Query Response
IMAG Selects the imaginary

display format.
N/A <0|1>><LF

PNA SCPI Equivalent - Notes
CALC:FORM Read-Write the display format for the

measurement.
PNA COM Equivalent - Notes
Format_Property Sets (or returns) the display format of the

measurement.

INPU

INPUCALC
INPUCALK
INPUDATA
INPUFORM
INPULEAS
INPUPMCAL1
INPUPMCAL2
INPURAW1
INPURAW2
INPURAW3
INPURAW4

INPUCALC
8753 Command Description Range Query Response
INPUCALC<num><ar
ray>

Inputs an error
coefficient array
<num>

N/A N/A

PNA SCPI Equivalent - Notes
CALC:DATA: Writes Measurement data, Memory data, or

530

Error terms
PNA COM Equivalent - Notes
Put_Error_Term_Method Puts variant error term data into the error-

correction buffer.
Put_Error_Term_Complex_Method Puts typed error term data into the error-

correction buffer
8753 Command Description Range Query Response
INPUDATA Inputs an error

corrected data array,
using the current
setting of the FORM
command.

N/A N/A

INPUFORM Inputs a formatted
data array, using the
current setting of the
FORM command.

N/A N/A

INPURAW1 Inputs raw data array
1 (S11 data). After
the data is received,
the analyzer stops
sweeping, error-
corrects the data,
then formats and
displays the data.

N/A N/A

INPURAW2 Inputs raw data array
2 (S21 data). After
the data is received,
the analyzer stops
sweeping, error-
corrects the data,
then formats and
displays the data.

N/A N/A

INPURAW3 Inputs raw data array
3 (S12 data). After
the data is received,
the analyzer stops
sweeping, error-
corrects the data,
then formats and
displays the data.

N/A N/A

INPURAW4 Inputs raw data array
4 (S22 data). After
the data is received,
the analyzer stops
sweeping, error-
corrects the data,
then formats and
displays the data.

N/A N/A

PNA SCPI Equivalent - Notes
Step 1 CALC:DATA: Input the data array.
Step 2 SENS:CORR If the downloaded data array is error

corrected, then error corrections need to be
turned OFF. If not, an additional set of
corrections will be applied to the downloaded
data.

PNA COM Equivalent - Notes

531

Step 1aPut_Data_Complex_Method Input raw data.
Step 1bPut_Data_Complex_Method Input formatted data
Step 2 Put_Data_Complex_Method If the downloaded data array is error

corrected, then error corrections need to be
turned OFF. If not, an additional set of
corrections will be applied to the downloaded
data.

INPUPMCAL
8753 Command Description Range Query Response
INPUPMCAL<array> Inputs an power

meter calibration
arrays for channels 1
and 2 in FORM4 only

N/A N/A

PNA SCPI Equivalent - Notes
SOUR1:POW:CORR:DATA Writes and reads source power calibration

data
PNA COM Equivalent - Notes
putSourcePowerCalData Method Inputs source power calibration data (as

variant data type) to this channel for a specific
source port.

putSourcePowerCalDataScalar Inputs source power calibration data (as
scalar values) to this channel for a specific
source port.

The following commands are not currently available.
8753 Command Description Range Query Response
INPUCALK<array> Inputs a cal kit array

in FORM1 only. Can
be read out with the
OUTCALK command.
After the transfer, the
data should be saved
into the user cal kit
area with the
SAVEUSEK
command.

N/A N/A

INPULEAS<learnstrin
g>

Inputs a learn string
in FORM1 only. Can
be read out with the
OUTPLEAS
command, or with
INPULEAS?.

N/A <data><LF >

LIM
8753 Command Description Range Query Response
LIMS Sets the limit stimulus

break point.
Stimulus range. Currently this

command can be
queried by sending
the command by the
OUTPACTI
command.

PNA SCPI Equivalent - Notes

532

CALC:LIM:SEGM1:STIM:STAR Read-Write the start (beginning) of the X-axis
stimulus value.

CALC:LIM:SEGM1:AMPL:STOP Read-Write the stop (end) of the X-axis
stimulus value.

PNA COM Equivalent - Notes
Begin_Stimulus_Property Specifies the beginning X-axis value of the

Limit Line.
End_Stimulus_Value Specifies the end X-axis value of the Limit

Line.

8753 Command Description Range Query Response
LIMD Sets the limit delta

value while editing a
limit line segment.

Amplitude range. Currently this
command can be
queried by sending
the command by the
OUTPACTI
command.

LIML Sets the lower limit
value.

Amplitude range. Same as above.

LIMM Sets the middle limit
value.

Amplitude range. Same as above.

LIMU Sets the upper limit
value.

Amplitude range. Same as above.

PNA SCPI Equivalent - Notes
CALC:LIM:DATA Read-Write data for limit lines.
PNA COM Equivalent - Notes
LimitSegment_Object Make a limit line object.

LIMI

LIMIAMPO
LIMILINE
LIMIMAOF
LIMISTIO
LIMITEST

8753 Command Description Range Query Response
LIMILINE<ON|OFF> Turns the display of

the limit lines on and
off.

N/A <0|1>><LF

PNA SCPI Equivalent - Notes
CALC:LIM:DISP:STAT Read-Write the display of limit lines ON or

OFF.
PNA COM Equivalent - Notes
LineDisplay_Property Turns the display of limit lines ON or OFF.

8753 Command Description Range Query Response
LIMITEST<ON|OFF> Turns limit testing on

and off.
N/A <0|1>><LF

PNA SCPI Equivalent - Notes
CALC:LIM:STAT Read-Write limit line testing ON or OFF.
PNA COM Equivalent - Notes

533

State_Property Turns an object ON and OFF.

8753 Command Description Range Query Response
LIMIAMPO<num>[HZ
|DB]

Enters the limit line
amplitude offset.

Amplitude range. <num>><LF

LIMIMAOF Marker to limit offset.
Centers the limit lines
about the current
marker position using
the limit amplitude
offset function.

N/A N/A

LIMISTIO<num>[HZ|
DB]

Enters the stimulus
offset of the limit
lines.

Stimulus range. <num>><LF

Notes
These commands currently are not available.

LIMT
8753 Command Description Range Query Response
LIMTFL Makes the segment a

flat line.
N/A <0|1>><LF

LIMTSL Makes the segment a
sloping line.

N/A <0|1>><LF

LIMTSP Makes the segment a
single point.

N/A <0|1>><LF

PNA SCPI Equivalent - Notes
CALC:LIM:DATA Read-Write data for limit lines.
PNA COM Equivalent - Notes
LimitSegment_Object Make a limit line object.

LINFREQ
8753 Command Description Range Query Response
LINFREQ Selects a linear

frequency sweep.
N/A <0|1>><LF

PNA SCPI Equivalent - Notes
SENS:SWE:TYPE Read-Write the type of analyzer sweep mode.
PNA COM Equivalent - Notes
Sweep_Type_Property Sets the type of X-axis sweep that is

performed on a channel.

LINM
8753 Command Description Range Query Response
LINM Selects the linear

magnitude display
format.

N/A <0|1>><LF

PNA SCPI Equivalent - Notes
CALC:FORM Read-Write the display format for the

measurement.
PNA COM Equivalent - Notes
Format_Property Sets (or returns) the display format of the

measurement.

534

LIS

LISFREQ
LISIFBWM
LISPWRM

8753 Command Description Range Query Response
LISFREQ Selects the list

frequency sweep
mode.

N/A <0|1>><LF

PNA SCPI Equivalent - Notes
SENS:SWE:TYPE Selects the sweep type.
PNA COM Equivalent - Notes
Sweep_Type_Property Selects the sweep type.

8753 Command Description Range Query Response
LISIFBWM<ON|OFF
>

Enables/disables the
IFBW setting for a
list-frequency table in
swept list mode.

N/A <0|1>><LF

PNA SCPI Equivalent - Notes
SENS:SEGM:BWID:CONT Read-Write whether the IF Bandwidth

resolution can be set independently for each
segment.

SENS:SEGM:BWID Read-Write the IFBandwidth for the specified
segment.

PNA COM Equivalent - Notes
IF_Bandwidth_Option_Property Enables the IFBandwidth to be set on

individual sweep segments.
IF_Bandwidth_Property Sets or returns the IF Bandwidth of the

segment.

8753 Command Description Range Query Response
LISPWRM<ON|OFF> Enables/disables the

power setting for a
list-frequency table in
swept list mode.

N/A <0|1>><LF

PNA SCPI Equivalent - Notes
SENS:SEGM:POW:CONT Read-Write whether Power Level can be set

independently for each segment.
SENS:SEGM:POW Read-Write the Port Power level for the

specified segment.
PNA COM Equivalent - Notes
Source_Power_Option_Property Enables the source power to be set on

individual sweep segments.
Test_Port_Power_Property Sets or returns the RF power level of the

segment.

LISTTYPE

535

8753 Command Description Range Query Response
LISTTYPELSTP Selects the stepped

list mode for use with
a list-frequency table.

N/A <0|1><LF>

LISTTYPELSWP Selects the swept list
mode for use with a
list-frequency table.

N/A <0|1><LF>

PNA SCPI Equivalent - Notes
SENS:SWE:GEN Read-Write sweep as Stepped or Analog.
PNA COM Equivalent - Notes
Sweep_Generation_Mode_Property Sets the method used to generate a sweep:

continuous ramp (analog) or discrete steps
(stepped).

LOAD
8753 Command Description Range Query Response
LOAD<num> Loads the file from

disk using the file
name provided by the
preceding
TITF<num>;
command. The actual
file loaded depends
on the file title in the
file position specified
by the TITF<num>
command. Requires
pass control mode
when using the GPIB
port.

integers 15 N/A

PNA SCPI Equivalent - Notes
MMEM:LOAD Write-only to load the specified file.
PNA COM Equivalent - Notes
Recall_Method Recalls a measurement state, calibration

state, or both.

LOGM
8753 Command Description Range Query Response
LOGM Selects the log

magnitude display
format.

N/A <0|1>><LF

PNA SCPI Equivalent - Notes
CALC:FORM Read-Write the display format for the

measurement.
PNA COM Equivalent - Notes
Format_Property Sets (or returns) the display format of the

measurement.

MANTRIG
8753 Command Description Range Query Response
MANTRIG Sets the trigger mode

to manual trigger on
N/A <0|1>><LF

536

point. OPC-
compatible.

PNA SCPI Equivalent - Notes
Step 1 TRIG:SOUR Set the trigger source to manual.
Step 2 SENS:SWE:TRIG:POIN Set the trigger mode to point.
PNA COM Equivalent - Notes
Step 1 Trigger_Signal_Property Set the trigger source to manual.
Step 2 Trigger_Mode_Property Set the trigger mode to point.

MARK

MARK<1|2|3|4|5> MARKMAXI
MARKBUCK MARKMIDD
MARKCENT MARKMINI
MARKCONT MARKOFF
MARKCOUP MARKREF
MARKCW MARKSPAN
MARKDELA MARKSTAR
MARKDISC MARKSTIM
MARKFAUV MARKSTOP
MARKFSTI MARKUNCO
MARKFVAL MARKZERO

8753 Command Description Range Query Response
MARK<1|2|3|4|5><nu
m>

Makes the selected
marker active and
sets its stimulus
value.

Stimulus range. For
frequency or power
sweeps, refer to
"Preset State and
Memory Allocation,"
in your analyzers
users guide. For CW
time: 0 to 24 hours.
For frequency sweep,
transform on:
±1/frequency step.
For CW time sweep,
transform on: ±1/time
step.

<num><LF

PNA SCPI Equivalent - Notes
 Step 1 CALC:MARK Set the specified marker ON. Note:

CALCulate commands act on the selected
measurement. You must have a
measurement defined and selected before a
marker can be turned on. To define a
measurement use
CALCulate<cnum>:PARameter:DEFine
<Mname>,<param>. Select the measurement
for each channel using
CALCulate<cnum>:PARameter:SELect
<Mname>.

 Step 2 CALC:MARK:X Set the marker's X-axis value (frequency,
power, or time).

PNA COM Equivalent - Notes

537

Stimulus_Property Sets and reads the X-Axis value of the
marker.

8753 Command Description Range Query Response
MARKBUCK<num> Places the active

marker on a specific
sweep point (bucket).
<num> is the bucket
number.

0 to (number-of-
points - 1). For
example, on a 201
point sweep, <num>
can range from 0 to
200.

<num><LF

PNA SCPI Equivalent - Notes
No equivalent command at present.

PNA COM Equivalent - Notes
Bucket_Number_Property Sets or returns the bucket number (data point)

for the active marker.

8753 Command Description Range Query Response
MARKCENT Sets the center

stimulus value to that
of the active marker’s
stimulus value.

N/A N/A

MARKSTAR Sets the start
stimulus to that of the
active marker’s.

N/A N/A

MARKSTOP Sets the stop
stimulus to that of the
active marker’s.

N/A N/A

MARKREF Sets the reference
value to that of the
active marker’s
amplitude.

N/A N/A

PNA SCPI Equivalent - Notes
CALC:MARK:SET Read-Write the selected instrument setting to

assume the value of the specified marker.
PNA COM Equivalent - Notes
Set_Center_Method Changes the analyzer’s center frequency to

the X-axis position of the marker. The start
frequency stays the same and the stop
frequency adjusts.

Set_Start_Method Changes the analyzer’s start frequency to the
X-axis position of the marker. The stop
frequency stays the same and the frequency
span adjusts.

Set_Stop_Method Changes the analyzer’s stop frequency to the
X-axis position of the marker. The start
frequency stays the same and the frequency
span adjusts.

SetReferenceLevel_Method Changes the measurement’s reference level
to the marker’s Y-axis value.

8753 Command Description Range Query Response
MARKDELA Sets electrical length

so group delay is
zero at the active

N/A N/A

538

marker’s stimulus.
PNA SCPI Equivalent - Notes

No equivalent command at present.
PNA COM Equivalent - Notes
SetElectricalDelay_Method Changes the measurement’s electrical delay

value to the marker’s delay value.

8753 Command Description Range Query Response
MARKMAXI Search for trace

maximum on the
current channel.
Same as SEAMAX.

N/A <0|1>><LF

MARKMINI Search for trace
minimum on the
current channel.
Same as SEAMIN.

N/A <0|1>><LF

PNA SCPI Equivalent - Notes
Step 1 CALC:MARK If a marker is not currently turned ON, set

marker to ON with this command.
Step 2 CALC:MARK:FUNC:EXEC Write-only to immediately execute (perform)

the specified search function.
PNA COM Equivalent - Notes
Search_Max_Method Searches the marker domain for the

maximum value.
Search_Min_Method Searches the marker domain for the

minimum value.

8753 Command Description Range Query Response
MARKCONT Places the markers

continuously on the
trace, not on discrete
points (interpolates
the marker values
between discrete
points).

N/A <0|1>><LF

MARKDISC Places the markers
on the discrete
measurement points.

N/A <0|1>><LF

PNA SCPI Equivalent - Notes
CALC:MARK:DISC Read-Write the specified marker as either

interpolate data or not.
PNA COM Equivalent - Notes
Interpolate_Markers_Method Turns All Marker Interpolation ON and OFF

for the measurement.

8753 Command Description Range Query Response
MARKOFF Turns all markers and

marker functions off.
N/A <0|1>><LF

PNA SCPI Equivalent - Notes
CALC:MARK:AOFF Write-only all markers off for selected

measurement.
PNA COM Equivalent - Notes
DeleteAllMarkers_Method Turn markers OFF by deleting all of the

539

markers from the measurement.

8753 Command Description Range Query Response
MARKCW Sets the CW

frequency to the
active marker’s
frequency.

N/A N/A

PNA SCPI Equivalent - Notes
No equivalent command at present.

PNA COM Equivalent - Notes
Set_CW_Method Changes the analyzer to sweep type CW

mode and makes the CW frequency the
marker’s frequency.

8753 Command Description Range Query Response
MARKFSTI<num> Sets the stimulus

position of the fixed
marker.

Stimulus range. For
frequency or power
sweeps, refer to
"Preset State and
Memory Allocation,"
in your analyzers
users guide. For CW
time: 0 to 24 hours.
For frequency sweep,
transform on:
±1/frequency step.
For CW time sweep,
transform on: ±1/time
step.

<num><LF

PNA SCPI Equivalent - Notes
Step 1 CALC:MARK If the marker is not turned ON, set the marker

ON.
Step 2 CALC:MARK:TYPE Set the marker type to "Fixed".
Step 3 CALC:MARK:X Set the position of the marker.
PNA COM Equivalent - Notes
Step 1 Type_Marker_Property Sets and reads the marker type.
Step 2 Stimulus_Property Sets and reads the X-Axis value of the

marker.

8753 Command Description Range Query Response
MARKMIDD Makes the marker

amplitude the limit
segment middle
value during a limit
segment edit.

N/A N/A

MARKSPAN Sets the span for the
entire trace to that of
the span between the
active marker and the
delta reference
marker.

N/A N/A

MARKSTIM During a limit
segment edit, sets
the limit stimulus
break point to that of

N/A N/A

540

the active marker’s.
MARKZERO Places the fixed

marker at the active
marker position and
makes it the delta
reference.

N/A N/A

Notes
These functions require multiple SCPI or
COM commands along with appropriate math
calculations.

8753 Command Description Range Query Response
MARKCOUP Couples the markers

between the
channels, as
opposed to
MARKUNCO.

N/A <0|1>><LF

MARKUNCO Uncouples the
markers between
channels, as
opposed to
MARKCOUP.

N/A <0|1>><LF

MARKFAUV Sets the auxiliary
value of the fixed
marker position.
Works in coordination
with MARKFVAL and
MARKFSTI.

Amplitude range.
Same as
MARKFVAL.

<num><LF

MARKFVAL Sets the value of the
fixed marker position.

Amplitude range. For
log mag: ± 500 dB.
For phase: ± 500
degrees. For Smith
chart and Polar: ±
500 units. For linear
magnitude: ± 500
units. For SWR: ±
500 units. The scale
is always positive,
and has minimum
values of 0.001dB,
10e-12 degrees, 10e-
15 seconds, and 10
picounits.

<num><LF

Notes
These commands are currently not supported.

MEAS
8753 Command Description Range Query Response
MEASA Measures and

displays input A on
the active channel.

N/A <0|1>><LF

MEASB Measures and
displays input B on

N/A <0|1>><LF

541

the active channel.
MEASR Measures and

displays input R on
the active channel.

N/A <0|1>><LF

PNA SCPI Equivalent - Notes
Step 1 CALC:PAR:DEF Create the measurement.
Step 2 DISP:WIND If a new window will be used to display the

measurement, then create a window.
Step 3 DISP:WIND:TRAC:FEED Display the measurement in the window.
PNA COM Equivalent - Notes
CreateMeasurement_Method Create and display the measurement.

MEASTAT
8753 Command Description Range Query Response
MEASTAT<ON|OFF> Turns trace statistics

on and off.
N/A <0|1>><LF

PNA SCPI Equivalent - Notes
No equivalent command at present.

PNA COM Equivalent - Notes
Show_Statistics_Property Displays and hides the measurement

statistics (peak-to-peak, mean, standard
deviation) on the screen.

MINMAX
8753 Command Description Range Query Response
MINMAX<ON|OFF> Enables/disables

min/max recording
per segment. Min and
max values are
recorded per limit
segment. Limit
testing need not be
active.

N/A <0|1>><LF

Notes
This command is not available on PNA.

MINU
8753 Command Description Range Query Response
MINU Data minus memory

(linear subtraction).
See also
"DISPDMM."

N/A <0|1>><LF

PNA SCPI Equivalent - Notes
CALC:MATH:FUNC Read-Write math operations on the currently

selected measurement and the trace stored in
memory.

PNA COM Equivalent - Notes
Trace_Math_Property Performs math operations on the

measurement object and the trace stored in
memory.

542

NUMG
8753 Command Description Range Query Response
NUMG<num> Activates the

indicated number of
groups of sweeps. A
group is whatever is
needed to update the
current parameter
once. This function
restarts averaging if it
is enabled. OPC-
compatible.

Integers 1999. N/A

PNA SCPI Equivalent - Notes
 Step 1 SENS:SWE:GRO:COUN Set the number of groups.
 Step 2 SENS:SWE:MODE Set the trigger mode to groups.
PNA COM Equivalent - Notes
Number Of Groups Method Sets the Number of trigger signals the

channel will receive. After the channels has
received that number of trigger signals, the
channel switches to Hold mode.

NUMR
8753 Command Description Range Query Response
NUMR Sets the number of

power meter readings
per point in a power
calibration

integers 1 to 100 <num><LF

PNA SCPI Equivalent - Notes
SOUR:POW:CORR:COLL:AVER Specifies how many power readings are taken

at each frequency point (averaging factor)
during a source power cal acquisition sweep.

PNA COM Equivalent - Notes
ReadingsPerPoint Property For purpose of averaging during source power

cal, specifies how many power readings are
taken at each frequency point (Averaging
factor).

OMII
8753 Command Description Range Query Response
OMII Omits the isolation

step of a calibration
sequence.

N/A N/A

PNA SCPI Equivalent - Notes
SENS:CORR:ISOL Read-Write isolation cal ON or OFF during

Full 2-port calibration.
PNA COM Equivalent - Notes
Acquire Cal Standard2 Method To omit Isolation from a 2-port calibration, do

not Acquire a cal standard for
naSOLT_Isolation

OPC
8753 Command Description Range Query Response
OPC Operation complete. N/A <0|1>><LF>

543

Reports the
completion of the
next command
received by setting bit
0 in the event-status
register, or by
replying to an
interrogation if OPC?
is issued.

PNA SCPI Equivalent - Notes
*OPC Operation complete command. Replace

"OPC" with "*OPC".
*OPC? Operation complete query. Replace "OPC?"

with "*OPC?".
PNA COM Equivalent - Notes

No equivalent command at present.

OUTP

OUTPACTI OUTPFAIP OUTPMARK OUTPRAF
OUTPAMAX OUTPFORE OUTPMEMF OUTPRAW
OUTPAMIN OUTPFORM OUTPMEMO OUTPRFFR
OUTPAPER OUTPICAL OUTPMSTA OUTPSEGAF
OUTPCALC OUTPIDEN OUTPMWID OUTPSEGAM
OUTPCALK OUTPIPMCL OUTPMWIL OUTPSEGF
OUTPCHAN OUTPKEY OUTPOPTS OUTPSEGM
OUTPDATA OUTPLEAS OUTPPLOT OUTPSEQ
OUTPDATF OUTPLIM OUTPPMCAL OUTPSERN
OUTPDATP OUTPLIMF OUTPPRE OUTPSTAT
OUTPDATR OUTPLIML OUTPPRIN OUTPTITL
OUTPERRO OUTPLIMM OUTPPRNALL

8753 Command Description Range Query Response
OUTPAPER Outputs the

smoothing aperture in
stimulus units, rather
than as a percentage.

N/A <num><LF

PNA SCPI Equivalent - Notes
 Step 1 CALC:SMO:APER Output the smoothing aperture.
 Step 2 SENS:FREQ:SPAN Output the span.
 Step 3 Multiply the smoothing aperture as a decimal

number with the span to produce the
smoothing aperture in stimulus units.

PNA COM Equivalent - Notes
 Step 1 Smoothing Aperture Property Output the smoothing aperture.
Step 2 Frequency Span Property Output the span.
 Step 3 Multiply the smoothing aperture as a decimal

number with the span to produce the
smoothing aperture in stimulus units.

8753 Command Description Range Query Response
OUTPCALC Outputs the selected

error coefficient array
for the active cal on

Two-digit integers
0112

<array><LF

544

the active channel.
PNA SCPI Equivalent - Notes
CALC:DATA Output the error coefficient array.
PNA COM Equivalent - Notes
GetErrorTerm Method Retrieves error term data for the active

calibration.
GetErrorTerm Complex Method Retrieves error term data in complex pairs

from the error correction buffer.

8753 Command Description Range Query Response
OUTPCALK Outputs the currently

active calibration kit,
as a string of less
than 1000 bytes. The
data is in FORM1.

N/A <$><LF >

PNA SCPI Equivalent - Notes
SENS:CORR:COLL:CKIT:NAME Read-Write a name for the selected

calibration kit.
PNA COM Equivalent - Notes
Name CalKit Property Sets and Returns a name for the selected

calibration kit.

8753 Command Description Range Query Response
OUTPDATA Outputs the error-

corrected data from
the active channel in
real/imaginary pairs.

N/A <array><LF

PNA SCPI Equivalent - Notes
CALC:DATA Output the error-corrected data array.
PNA COM Equivalent - Notes
GetNAComplex Method Output the error-corrected data array.

8753 Command Description Range Query Response
OUTPFORM Outputs the formatted

display data array
from the active
channel, in current
display units.

N/A <array><LF

PNA SCPI Equivalent - Notes
CALC:DATA Output the data array.
PNA COM Equivalent - Notes
GetData Method Output the data array.

8753 Command Description Range Query Response
OUTPIDEN Outputs the

identification string
for the analyzer in the
form: AGILENT
TECHNOLOGIES
,87NNEX,xxxxxxxxxx
,X.XX where
87NNEX is the model
number of the
instrument,
xxxxxxxxxx is the

N/A <$><LF >

545

serial number of the
instrument, and X.XX
is the firmware
revision of the
instrument. (Same as
the "IDN?"
command.)

PNA SCPI Equivalent - Notes
*IDN? Returns a string that uniquely identifies the

analyzer.
PNA COM Equivalent - Notes
Application Property Returns the name of the Analyzer making

measurements on the channel.

8753 Command Description Range Query Response
OUTPIPMCL Outputs the

interpolated power
meter calibration
array for channel 1 or
channel 2. Values
are returned as 100
times the interpolated
power meter reading
in dB. This is an
ASCII transfer
(FORM4).

Integers 1 or 2. <array><LF

PNA SCPI Equivalent - Notes
SOUR:POW:CORR:DATA Writes and reads source power calibration

data.
PNA COM Equivalent - Notes
get SourcePowerCalData Method
get SourcePowerCalDataScalar Method

Retrieves requested source power calibration
data, if it exists, from this channel.

8753 Command Description Range Query Response
OUTPLIM Outputs the status of

the limit test for the
channel selected with
<num>.

Integers 14 <0|1|-1><LF

PNA SCPI Equivalent - Notes
STAT:QUES:LIM1:COND? Check status bit to determine status of the

limit test.
PNA COM Equivalent - Notes

No equivalent command at present.

8753 Command Description Range Query Response
OUTPLIML Outputs the limit test

results for each point
in the sweep. This is
an ASCII transfer.

N/A <array><LF

OUTPLIMM Outputs the limit test
results at the active
marker.

N/A <num,num,num,num
><LF

PNA SCPI Equivalent - Notes

546

No equivalent command at present.
PNA COM Equivalent - Notes
Get Test Result Method Returns the result of limit line testing.

8753 Command Description Range Query Response
OUTPMARK Outputs the active

marker values. The
first two numbers are
the marker response
values, and the last is
the stimulus value.

N/A <num,num,num><LF
>

PNA SCPI Equivalent - Notes
CALC:MARK:X Read-Write the marker’s X-axis value

(frequency, power, or time).
CALC:MARK:Y? Read-only the marker’s Y-axis value.
PNA COM Equivalent - Notes
Stimulus Property Sets and reads the X-Axis value of the

marker.
Value Property Reads the Y-Axis value of the marker.

8753 Command Description Range Query Response
OUTPMEMO Outputs the memory

trace from the active
channel. The data is
in real/imaginary
pairs, and can be
treated the same as
data read with the
OUTPDATA
command.

N/A <array><LF

PNA SCPI Equivalent - Notes
CALC:DATA Read-Write either measurement data or

memory data. When querying memory, you
must first store a trace into memory using
CALCuate<cnum>:MATH:MEMorize

PNA COM Equivalent - Notes
DataToMemory Method If the data is not in memory, store data into

memory.
GetData Method Output memory data.

8753 Command Description Range Query Response
OUTPMSTA Outputs the marker

statistics in ASCII
format: mean,
standard deviation,
and peak-to-peak
variation in that order.
If statistics is not on,
it is turned on to
generate current
values and turned off
again.

N/A <num,num,num><LF

PNA SCPI Equivalent - Notes
Step 1 CALC:FUNC:TYPE Select the statistic TYPE that you can then

query.

547

Step 2 CALC:FUNC:DATA? Read the selected trace statistic.
PNA COM Equivalent - Notes
Get Trace Statistics Method Returns the Trace Statistics.

8753 Command Description Range Query Response
OUTPMWID Outputs the marker

bandwidths search
results in ASCII
format: bandwidth,
center, and Q in that
order. If widths is not
on, it is turned on to
generate current
values and then
turned off again.

N/A <num,num,num><LF
>

OUTPMWIL Outputs the marker
bandwidths search
results in ASCII
format: bandwidth,
center, Q, and loss in
that order. If widths is
not on, it is turned on
to generate current
values and turned off
again.

N/A <num,num,num,num
><LF>

PNA SCPI Equivalent - Notes
CALC:MARK:BWID Use command to set and return filter

statistics.
PNA COM Equivalent - Notes
Get Filter Statistics Method Returns the Filter Statistics resulting from a

SearchFilterBandwidth method.

8753 Command Description Range Query Response
OUTPOPTS Outputs an ASCII

string of the options
installed in the
analyzer.

N/A <$><LF

PNA SCPI Equivalent - Notes
*OPT? Returns a string identifying the analyzer

option configuration.
PNA COM Equivalent - Notes
Options Property Returns a string identifying the analyzer

option configuration.

8753 Command Description Range Query Response
OUTPPRIN Outputs a PCL raster

dump of the display,
intended for a
graphics printer.

N/A <$><LF

PNA SCPI Equivalent - Notes
No equivalent command at present.

PNA COM Equivalent - Notes
DoPrint Method Prints the screen to the active printer.
PrintToFile Method Saves the screen data to a bitmap (.bmp) file.

548

8753 Command Description Range Query Response
OUTPRAW Outputs the selected

raw data array.
Integers 14:
1=S11data
2=S21 data
3=S12 data
4=S22 data

<array><LF

PNA SCPI Equivalent - Notes
CALC:DATA Output the data array.
PNA COM Equivalent - Notes
GetData Method Output the data array.

8753 Command Description Range Query Response
OUTPSERN Outputs a string that

contains the serial
number of the
analyzer.

N/A <$><LF

PNA SCPI Equivalent - Notes
*IDN? Output the serial number.
PNA COM Equivalent - Notes
IDString Property Returns the ID of the analyzer, including the

Model number, Serial Number, and the
Software revision number.

8753 Command Description Range Query Response
OUTPSTAT Returns the status

byte as an ASCII
integer (0255) that
can be interpreted as
the 8-bit status byte.
This command is the
same as "STB?."

N/A <num><LF

PNA SCPI Equivalent - Notes
*STB? Reads the value of the instrument status byte.
PNA COM Equivalent - Notes

No equivalent command at present.

8753 Command Description Range Query Response
OUTPTITL Outputs the display

title in ASCII format.
N/A <$><LF

PNA SCPI Equivalent - Notes
DISP:WIND:TITL:DATA Read-Write data in the window title area.
PNA COM Equivalent - Notes
Title Property Writes or reads a custom title for the window.

8753 Command Description Range Query Response
OUTPDATF Fast data transfer

command for
OUTPDATA.

N/A <array><LF

OUTPFORE Fast data transfer
command for
OUTPFORM.

N/A <array><LF

OUTPMEMF Fast data transfer
command for
OUTPMEMO.

N/A <array><LF

OUTPRAF<num> Fast data transfer of Integers 14: <array><LF

549

the selected raw data
array.

1=S11data
2=S21 data
3=S12 data
4=S22 data

Notes
The PNA Series Network Analyzer outputs
data at the fastest possible data rate at all
times. Therefore, there are not any
commands in the PNA Series that correspond
to the above commands.

8753 Command Description Range Query Response
OUTPACTI Outputs the value of

the active function, or
the last active
function if the active
entry area is off. The
value is returned in
ASCII format.

N/A <$><LF>

OUTPCHAN Outputs the active
channel number: 1, 2,
3, or 4.

N/A <num><LF

OUTPDATP Outputs the trace
data indexed by point
(see "SELPT").

N/A <num,num><LF

OUTPDATR Outputs the trace
data for a range of
points (see
"SELMINPT,"
"SELMAXPT"). This
is an ASCII (FORM4)
transfer.

N/A <array><LF

Notes
The PNA Series Network Analyzer has
features to output data and state information
much different than earlier network analyzers.
Therefore, there are not any commands in the
PNA Series that directly correspond to the
above commands.

8753 Command Description Range Query Response
OUTPAMAX Outputs the max

values for all limit line
segments. This is an
ASCII transfer
(FORM4).

N/A <array><LF

OUTPAMIN Outputs the min
values for all limit line
segments. This is an
ASCII transfer
(FORM4).

N/A <array><LF

OUTPLIMF Outputs the limit test
results for each failed
point, followed by the
number of failed

N/A <array><LF

550

points. This is an
ASCII transfer.

OUTPSEGAF Outputs the segment
number and its limit
test status for all
active segments. This
is an ASCII transfer.

N/A <array><LF

OUTPSEGAM Outputs the limit test
min/max for all
segments. Outputs
the segment number,
max stimulus, max
value, min stimulus,
min value for all
active segments. This
is an ASCII transfer.

N/A <array><LF

OUTPSEGF Outputs the limit test
status for a specified
segment. See also
"SELSEG."

N/A <0|1|-1><L F>
Values returned for
limit test status are: 0
(fail), 1 (pass), or -1
(no limit).

OUTPSEGM Outputs limit test
min/max for a
specified segment.
See also "SELSEG."

N/A <num,num><LF

Notes
These limit and segment commands currently
are not available.

8753 Command Description Range Query Response
OUTPERRO Outputs the oldest

error message in the
error queue. Sends
the error number first,
and then the error
message itself, as an
ASCII (FORM4)
string no longer than
50 characters.

N/A <num,$><LF

OUTPFAIP This command is
similar to OUTPLIMF
except that it reports
the number of failures
first, followed by the
stimulus and trace
values for each failed
point in the test.
ASCII format.

N/A <array><LF

OUTPICAL Outputs the selected
interpolated error
coefficient array for
the active cal on the
active channel.

Two-digit integers
0112.

<array><LF

OUTPKEY Outputs the key code N/A <num><LF

551

of the last key
pressed in ASCII
format. An invalid key
is reported with a 63,
a knob turn with a -1.
See programming
manual for additional
information.

OUTPLEAS Outputs the learn
string, which contains
the entire front panel
state, the limit table,
and the list frequency
table. It is always in
binary format not
intended for
decoding.

N/A <learnstring><LF

OUTPPLOT Outputs the HP-GL
plot string in ASCII
format to the GPIB
port. Can be directed
to a plotter, or read
into the computer.

N/A <$><LF>

OUTPPMCAL Outputs the power
meter calibration
array for channel 1 or
channel 2. See
programming manual
for additional
information.

Integers 1 or 2. <array><LF

OUTPPRE Outputs pre-raw data
array <num>. See
programming manual
for additional
information.

integers 14:
1=S11data
2=S21 data
3=S12 data
4=S22 data

<array><LF

OUTPPRNALL Outputs all of the list
values or the current
page of operating
parameters in ASCII
format. See
programming manual
for additional
information.

N/A Rows of data
separated by a <LF>.
Ends with <LF><LF>.

OUTPRFFR Outputs the external
source RF frequency.
The instrument must
be in external source
mode, using either
INSMEXSA or
INSMEXSM.

N/A <num><LF

OUTPSEQ Outputs the specified
sequence listing to
the GPIB port.

Integers 16. <$><LF>

Notes
These commands currently are not available.

552

PARA
8753 Command Description Range Query Response
PARAOUT Programs all GPIO

output bits at once.
integers 0255 <num><LF

PNA SCPI Equivalent - Notes
CONTrol:AUXiliary:C:DATA Reads and writes a 4-bit value to Port C on

the Aux I/O connector.
PNA COM Equivalent - Notes
Put PortCData Method Writes a 4-bit value to Port C on the Aux I/O

connector (pins 22-25)

PHAO
8753 Command Description Range Query Response
PHAO<num> Sets the phase offset. 0360 degrees <num><LF
PNA SCPI Equivalent - Notes
CALC:CORR:OFFS:PHAS Read-Write the phase offset for the selected

measurement.
PNA COM Equivalent - Notes
Phase Offset Property Sets the Phase Offset.

PHAS
8753 Command Description Range Query Response
PHAS Selects the phase

display format.
N/A <0|1>><LF

PNA SCPI Equivalent - Notes
CALC:FORM Read-Write the display format for the

measurement.
PNA COM Equivalent - Notes
Format Property Sets (or returns) the display format of the

measurement.

POIN
8753 Command Description Range Query Response
POIN<num> Sets the number of

points in the sweep,
or in a sweep
segment.

Choose from: 3, 11,
21, 26, 51, 101, 201,
401, 801, 1601

<num><LF

PNA SCPI Equivalent - Notes
SENS:SWE:POIN Read-Write the number of data points for the

measurement. (2 - 16001)
PNA COM Equivalent - Notes
Number of Points Property Sets or returns the Number of Points. (2 -

16001)

POL
8753 Command Description Range Query Response
POLA Selects the polar

display format.
N/A <0|1>><LF

POLMLIN Selects linear as the
marker readout

N/A <0|1>><LF

553

format for polar
display.

POLMLOG Selects log as the
marker readout
format for polar
display.

N/A <0|1>><LF

POLMRI Selects
real/imaginary as the
marker readout
format for polar
display.

N/A <0|1>><LF

PNA SCPI Equivalent - Notes
CALC:FORM Selects the polar display format.
CALC:MARK Use this command to turn on a marker.
CALC:MARK:FORM Selects the appropriate marker readout

format.
PNA COM Equivalent - Notes
Format Property Selects the polar display format.
Marker Format Property Selects the appropriate marker readout

format.

PORE
8753 Command Description Range Query Response
PORE<ON|OFF> Turns port extensions

on and off.
N/A <0|1>><LF

PNA SCPI Equivalent - Notes
SENS:CORR:EXT Read-Write port extensions ON or OFF.
PNA COM Equivalent - Notes
State Property Turns port extensions ON or OFF.

PORT
8753 Command Description Range Query Response
PORT1<num>[S] Set the port

extension length for
Port 1

±10 seconds <0|1>><LF

PORT2<num>[S] Set the port
extension length for
Port 2

±10 seconds <0|1>><LF

PORTA<num>[S] Set the port
extension length for
Input A

±10 seconds <0|1>><LF

PORTB<num>[S] Set the port
extension length for
Input B

±10 seconds <0|1>><LF

PNA SCPI Equivalent - Notes
SENS:CORR:EXT:PORT Read-Write the extension value at the

specified port.
SENS:CORR:EXT:REC Read-Write the extension value at the

specified receiver.
PNA COM Equivalent - Notes
Port1 Property Sets the port extension value for Port 1.
Port2 Property Sets the port extension value for Port 2.
InputA Property Sets the port extension value for Receiver A.
InputB Property Sets the port extension value for Receiver B.

554

PORTP
8753 Command Description Range Query Response
PORTP<CPLD|UNC
PLD>

Selects either
coupled or uncoupled
for the port powers of
a given channel.

N/A <0|1>><LF

PNA SCPI Equivalent - Notes
SOUR:POW:COUP Read-Write Port Power Coupling ON or OFF.
PNA COM Equivalent - Notes
CouplePorts Property Turns ON and OFF source power coupling.

POWE
8753 Command Description Range Query Response
POWE<num>[DB] Sets the output

power level.
output power range
of your analyzer. The
output power range
of your analyzer
depends upon the
model and installed
options. Refer to
your analyzers users
guide to determine
the power range of
your analyzer.

<num><LF

PNA SCPI Equivalent - Notes
SOUR:POW Read-Write the RF power output level.
PNA COM Equivalent - Notes
Test Port Power Property Read-Write the RF power output level.

POWL
8753 Command Description Range Query Response
POWLFREQ Selects the frequency

for which a power
loss correction is
entered. This must be
followed by a
POWLLOSS<num>;
command,which sets
the value.

stimulus range <num><L F >

POWLLOSS Sets the loss value
for a particular
frequency, set by
POWLFREQ, in the
power loss list.

-9900 to 9900 dB <num><L F >

PNA SCPI Equivalent - Notes
SOUR:POW:CORR:COLL:TABL:FREQ (Read-Write) Read or write frequency values

for the selected table (cal factor table for a
power sensor, or the loss compensation
table).

SOUR:POW:CORR:COLL:TABL:DATA (Read-Write) Read or write data into the
selected table. If the selected table is a power
sensor table, the data is interpreted as cal
factors in units of percent. If the loss table is

555

selected, the data is interpreted as loss in
units of dB.

PNA COM Equivalent - Notes
Frequency Property Sets or returns the frequency associated with

a PowerLossSegment.
CalFactor Property Sets or returns the cal factor value associated

with a power sensor cal factor segment.

POWR
8753 Command Description Range Query Response
POWR<num> Sets the source

power range. See
also "PRAN."

Use two-digit integers
0007.

N/A

PNA SCPI Equivalent - Notes
SOUR:POW:ATT Setting the attenuation is equivalent to setting

the source power range.
PNA COM Equivalent - Notes
Attenuator Property Setting the attenuation is equivalent to setting

the source power range.

POWS
8753 Command Description Range Query Response
POWS Selects power sweep

from the sweep type
menu.

N/A <0|1>><LF

PNA SCPI Equivalent - Notes
SENS:SWE:TYPE Read-Write the type of analyzer sweep mode.
PNA COM Equivalent - Notes
Sweep Type Property Sets the type of X-axis sweep that is

performed on a channel.

POWT
8753 Command Description Range Query Response
POWT<ON|OFF> Sets source power on

or off. Works the
opposite of the SOUP
command. Sending
POWTON turns
source power off.
Sending POWTOFF
turns source power
on.

N/A <0|1>><LF>

PNA SCPI Equivalent - Notes
OUTP Turns ON and OFF Source Power.
PNA COM Equivalent - Notes
Source Power State Property Turns ON and OFF Source Power.

PRAN
8753 Command Description Range Query Response
PRAN<num> Sets the source

power range. See
also "POWR."

integers 07. N/A

PNA SCPI Equivalent - Notes

556

SOUR:POW:ATT Setting the attenuation is equivalent to setting
the source power range.

PNA COM Equivalent - Notes
Attenuator Property Setting the attenuation is equivalent to setting

the source power range.

PRES
8753 Command Description Range Query Response
PRES Presets the analyzer

to the factory preset
state. OPC-
compatible.

N/A N/A

PNA SCPI Equivalent - Notes
SYST:PRES Preset.
PNA COM Equivalent - Notes
Preset Method Preset

PRIN
8753 Command Description Range Query Response
PRINALL Copies the display, in

raster graphics mode,
to a printer. Requires
pass control when
using the GPIB port.
(Use PRINTALL to
send ASCII data to
the printer.)

N/A N/A

PNA SCPI Equivalent - Notes
No equivalent command at present.

PNA COM Equivalent - Notes
Do Print Method Prints the screen to the active printer.
PrintToFile Method Saves the screen data to a bitmap (.bmp) file.

PWMC
8753 Command Description Range Query Response
PWMCONES Power Meter Cal

done on one sweep.
A calibration sweep
should be taken. a
calibration sweep
should be taken
(TAK) to ensure a
valid power
calibration.

-100dB to 100dB <0|1>><LF>

PNA SCPI Equivalent - Notes
Selects the source power calibration method.

PNA COM Equivalent - Notes

PWRR
8753 Command Description Range Query Response
PWRR<PMAN|PAUT Selects whether the N/A <0|1>><LF 0 =

557

O> power range is in
auto or manual
mode.

manual mode; 1 =
auto mode

PNA SCPI Equivalent - Notes
SOUR:POW:ATT:AUTO Read-Write automatic attenuation control ON

or OFF. Setting the automatic attenuation
control is equivalent to setting the source
power range mode.

PNA COM Equivalent - Notes
Attenuator Mode Property Sets or returns the mode of operation of the

attenuator control. Setting the automatic
attenuation control is equivalent to setting the
source power range mode.

PWRLOSS
8753 Command Description Range Query Response
PWRLOSS Selects whether or

not to use the power
loss table for a power
meter calibration

N/A <0|1>><LF>

PNA SCPI Equivalent - Notes
SOUR:POW:CORR:COLL:TABL:LOSS (Read-Write) Indicates whether or not to

adjust the power readings using the values in
the loss table during a source power cal
sweep.

PNA COM Equivalent - Notes
UsePowerLossSegments Property Specifies if subsequent calls to the

AcquirePowerReadings method will make use
of the loss table (PowerLossSegments).

RAI
8753 Command Description Range Query Response
RAID Completes the

response and
isolation cal
sequence. OPC-
compatible.

N/A N/A

RAIISOL Calls the isolation
class for the
response and
isolation calibration.

N/A N/A

RAIRESP Calls the response
class for the
response and
isolation calibration.

N/A N/A

PNA SCPI Equivalent - Notes
SENS:CORR:COLL:SAVE Write-only to calculate the correction data

using the selected :METHod and turn error
correction ON.

SENS:CORR:COLL Write-only to measure the specified standard
from the selected calibration kit.

SENS:CORR:COLL:METH Read-Write the calibration method.
PNA COM Equivalent - Notes
Calculate Error Coefficients Method Calculates the correction data using the

558

selected Cal Type and turns error correction
ON.

AcquireCalStandard2 Method Measures the specified standard from the
selected calibration kit.

SetCalInfo Method Specifies the type of calibration to perform.

REAL
8753 Command Description Range Query Response
REAL Sets the display

format to real.
N/A <0|1>><LF

PNA SCPI Equivalent - Notes
CALC:FORM Read-Write the display format for the

measurement.
PNA COM Equivalent - Notes
Format Property Sets (or returns) the display format of the

measurement.

REF
8753 Command Description Range Query Response
REFP<num> Enters the reference

position. 0 is the
bottom, 10 is the top
of the graticule.

Integers 0–10 <num><LF

REFV<num> Enters the reference
line value.

Amplitude range. For
log mag: ± 500 dB.
For phase: ± 500
degrees. For Smith
chart and Polar: ±
500 units. For linear
magnitude: ± 500
units. For SWR: ±
500 units. The scale
is always positive,
and has minimum
values of 0.001dB,
10e-12 degrees, 10e-
15 seconds, and 10
picounits.

<num><LF

PNA SCPI Equivalent - Notes
DISP:WIND:TRAC:Y:RPOS Read-Write the Reference Position of the

specified trace in the specified window.
DISP:WIND:TRAC:Y:RLEV Read-Write the Y axis Reference Level of the

specified trace in the specified window.
PNA COM Equivalent - Notes
Reference Position Property Sets or returns the Reference Position of the

active trace.
Reference Value Property Sets or returns the value of the Y-axis

Reference Level of the active trace.

REIC
8753 Command Description Range Query Response
REIC Sets the power level

reference value for a
power calibration

Amplitude Range N/A

559

PNA SCPI Equivalent - Notes
CALC:CORR:OFFS (Read-Write) Specifies the power level to

which the selected (unratioed) measurement’s
data is to be adjusted by a Receiver Power
Calibration. This command applies only when
the selected measurement is of unratioed
power.

PNA COM Equivalent - Notes
LogMagnitudeOffset Property Sets or returns the power offset value in dBm

that the normalized unratioed power
measurement data will be shifted by. The
unratioed power measurement is effectively
calibrated to the power level specified by the
value of LogMagnitudeOffset as soon as the
Normalization property is set to ON after the
DataToDivisor method has been called.

RESPDONE
8753 Command Description Range Query Response
RESPDONE Completes the

response calibration
sequence. OPC-
compatible.

N/A N/A

PNA SCPI Equivalent - Notes
SENS:CORR:COLL:SAVE Write-only to calculate the correction data.
PNA COM Equivalent - Notes
Calculate Error Coefficients Method Calculates the correction data.

REST
8753 Command Description Range Query Response
REST Measurement restart. N/A N/A
PNA SCPI Equivalent - Notes
Step 1 ABOR Abort the current sweep with the command in

Step 1.
Step 2 INIT Initiate a new sweep with the command in

Step 2.
PNA COM Equivalent - Notes

No equivalent command at present.

REV
8753 Command Description Range Query Response
REVI Calls the reverse

isolation calibration
class during a full 2-
port calibration.

N/A N/A

REVM Calls the reverse
match calibration
class during a full 2-
port calibration.

N/A N/A

REVT Calls the reverse
transmission
calibration class
during a full 2-port

N/A N/A

560

calibration.
PNA SCPI Equivalent - Notes
SENS:CORR:COLL:SAVE Write-only to calculate the correction data

using the selected :METHod and turn error
correction ON.

SENS:CORR:COLL Write-only to measure the specified standard
from the selected calibration kit.

SENS:CORR:COLL:METH Read-Write the calibration method.
PNA COM Equivalent - Notes
Calculate Error Coefficients Method Calculates the correction data using the

selected Cal Type and turns error correction
ON.

AcquireCalStandard2 Method Measures the specified standard from the
selected calibration kit.

SetCalInfo Method Specifies the type of calibration to perform.

RST
8753 Command Description Range Query Response
RST Presets the analyzer

to the factory preset
state. OPC-
compatible.

N/A N/A

PNA SCPI Equivalent - Notes
*RST Executes a device reset and cancels any

pending *OPC command or query. Replace
"RST" with "*RST".

PNA COM Equivalent - Notes
Reset Method Resets instrument. Clears all existing

windows and measurements.

S
8753 Command Description Range Query Response
S11 Forward reflection

measurement.
N/A <0|1>><LF

S12 Reverse transmission
measurement.

N/A <0|1>><LF

S21 Forward transmission
measurement.

N/A <0|1>><LF

S22 Reverse reflection
measurement.

N/A <0|1>><LF

PNA SCPI Equivalent - Notes
Follow the steps below to create and display a
measurement.

Step 1 CALC:PAR:DEF Create the measurement.
Step 2 DISP:WIND If a new window will be used to display the

measurement, then create a window.
Step 3 DISP:WIND:TRAC:FEED Display the measurement in the window.
PNA COM Equivalent - Notes
CreateMeasurement Method Create and display the measurement.

SADD
8753 Command Description Range Query Response

561

SADD Adds a new segment
to the table during a
list-frequency, limit-
table, cal sensor
table, or power loss
table edit.

N/A N/A

PNA SCPI Equivalent - Notes
SENS:SEGM:ADD Write-only to add a segment. A segment

must be added prior to setting data in the
segment.

PNA COM Equivalent - Notes
Add segments Method Add a segment.

SCAL
8753 Command Description Range Query Response
SCAL<num> Sets the trace scale

factor.
Amplitude range. For
log mag: ± 500 dB.
For phase: ± 500
degrees. For Smith
chart and Polar: ±
500 units. For linear
magnitude: ± 500
units. For SWR: ±
500 units. The scale
is always positive,
and has minimum
values of 0.001dB,
10e-12 degrees, 10e-
15 seconds, and 10
picounits.

<num><LF

PNA SCPI Equivalent - Notes
DISP:WIND:TRAC:Y:PDIV Read-Write the Y axis Per Division value of

the specified trace in the specified window.
PNA COM Equivalent - Notes
YScale Property Sets or returns the Y-axis Per Division value

of the active trace.

SDEL
8753 Command Description Range Query Response
SDEL Deletes the current

segment while editing
a list frequency, a
limit table, or a power
loss list.

N/A N/A

PNA SCPI Equivalent - Notes
SENS:SEGM:DEL Write-only to delete the specified segment

number.
SENS:SEGM:DEL:ALL Write-only to delete all segments.
CALC:LIM:DATA Limit lines always remain in memory. Use this

SCPI command to set limit segment OFF.
PNA COM Equivalent - Notes
Remove Method Removes an item from a collection of objects.

SEA

562

SEAL
SEAMAX
SEAMIN
SEAOFF
SEAR
SEATARG

8753 Command Description Range Query Response
SEAL Search left for next

occurrence of the
target value.

N/A N/A

SEAR Search right for next
occurrence of the
target value.

N/A N/A

PNA SCPI Equivalent - Notes
Step 1 CALC:MARK:TARG Read-Write the target value for the specified

marker when doing Target Searches.
Step 2 CALC:MARK:FUNC:EXEC Write-only to immediately execute (perform)

the specified search function.
PNA COM Equivalent - Notes
Step 1 TargetValue Property Sets the target value for the marker when

doing Target Searches.
Step 2a Search Target Left Method Moving to the left of the marker position,

searches the marker’s domain for the target
value.

Step 2b Search Target Right Method Moving to the right of the marker position,
searches the marker’s domain for the target
value.

8753 Command Description Range Query Response
SEAMAX Search for trace

maximum on the
current channel.

N/A <0|1><LF>

SEAMIN Search for trace
minimum on the
current channel.

N/A <0|1><LF>

PNA SCPI Equivalent - Notes
CALC:MARK:FUNC:EXEC Write-only to immediately execute (perform)

the specified search function.
PNA COM Equivalent - Notes
Search Max Method Searches the marker domain for the

maximum value.
Search Min Method Searches the marker domain for the minimum

value.

8753 Command Description Range Query Response
SEAOFF Turns the marker

search off.
N/A <0|1><LF>

PNA SCPI Equivalent - Notes
CALC:MARK Turn marker search off by turning OFF the

563

marker.
PNA COM Equivalent - Notes
Delete Marker Method Turn marker search off by turning OFF the

marker.

8753 Command Description Range Query Response
SEATARG<num> Set the search target

amplitude.
Amplitude range. <num><LF>

PNA SCPI Equivalent - Notes
CALC:MARK:TARG Sets the target value for the marker when

doing Target Searches.
PNA COM Equivalent - Notes
TargetValue Property Sets the target value for the marker when

doing Target Searches.

SEDI
8753 Command Description Range Query Response
SEDI<num> During either a

frequency, limit, or
power loss table edit,
selects segment
<num> for editing.

State dependent.
Range for frequency
segment = 1 to 30;
Range for limit test
segment = 1 to 18;
Range for power loss
table segment = 1 to
12

<num><LF>

PNA SCPI Equivalent - Notes
PNA Network Analyzers allow one to directly
edit a segment or limit line. To edit a segment
or limit line, see the following commands:

Sense:Segment Commands to edit a segment.
Calc:Limit Commands to edit a limit line.
PNA COM Equivalent - Notes

PNA Network Analyzers allow one to directly
edit a segment or limit line. See the
appropriate methods and properties for
segments and limit lines.

SEG
8753 Command Description Range Query Response
SEGIFBW<num> Sets the IFBW for the

active segment of a
list-frequency table in
swept list mode.

Choose from 10, 30,
100, 300, 1000,
3000, 3700, 6000.

see "Note" below

SEGPOWER<num> Sets the power for
the active segment of
a list-frequency table
in swept list mode.

Output power range
of your analyzer. The
output power range is
dependent upon the
model and option
configuration of your
analyzer. Refer to
your analyzers users
guide to determine
the output power

see "Note" below

564

range of your
analyzer.

Note: Currently
these commands can
be queried by
sending the
command followed by
the OUTPACTI
command.

PNA SCPI Equivalent - Notes
SENS:SEGM:BWID Read-Write the IFBandwidth for the specified

segment.
SENS:SEGM:POW Read-Write the Port Power level for the

specified segment.
PNA COM Equivalent - Notes
IF Bandwidth Property Sets or returns the IF Bandwidth of all

measurements in a channel.
 OR
 Sets or returns the IF Bandwidth of a
specified sweep segment.

Test Port Power Property Sets or returns the RF power level of all
measurements in a channel
 or
 Sets or returns the RF power level of a
specified sweep segment.

SING
8753 Command Description Range Query Response
SING Single sweep. OPC-

compatible.
N/A N/A

PNA SCPI Equivalent - Notes
INIT:CONT If sweep is not is single sweep mode, put the

analyzer in single sweep mode by setting
continuous OFF.

INIT Trigger one sweep.
PNA COM Equivalent - Notes
Single_Method Single sweep.

SMI
8753 Command Description Range Query Response
SMIC Selects Smith chart

display format.
N/A <0|1>><LF

SMIMGB Selects G+jB
(conductance and
susceptance) marker
readout on a Smith
chart.

N/A <0|1>><LF

SMIMLIN Selects linear
magnitude marker
readout on a Smith
chart.

N/A <0|1>><LF

SMIMLOG Selects log
magnitude marker
readout on a Smith

N/A <0|1>><LF

565

chart.
SMIMRI Selects

real/imaginary pairs
(resistance and
reactance) marker
readout on a Smith
chart.

N/A <0|1>><LF

SMIMRX Selects R + jX marker
readout on a Smith
chart.

N/A <0|1>><LF

PNA SCPI Equivalent - Notes
CALC:FORM Selects the Smith chart display format.
CALC:MARK Use this command to turn on a marker.
CALC:MARK:FORM Selects the appropriate marker readout

format.
PNA COM Equivalent - Notes
Format Property Selects the Smith chart display format.
Marker Format Property Selects the appropriate marker readout

format.

SMOO
8753 Command Description Range Query Response
SMOOAPER<num> Sets the smoothing

aperture as a percent
of the trace.

0.05 to 20% <num><LF

SMOOO<ON|OFF> Selects whether
smoothing is on or
off.

N/A <0|1>><LF

PNA SCPI Equivalent - Notes
CALC:SMO:APER Read-Write the amount of smoothing.
CALC:SMO Read-Write data smoothing ON or OFF.
PNA COM Equivalent - Notes
Smoothing Aperture Property Specifies or returns the amount of smoothing.
Smoothing Property Turns data smoothing ON and OFF.

SOUP
8753 Command Description Range Query Response
SOUP<ON|OFF> Selects whether the

source power is on or
off.

N/A <0|1>><LF

PNA SCPI Equivalent - Notes
OUTP Read-Write RF power from the source ON or

OFF.
PNA COM Equivalent - Notes
Source Power State Property Turns source power ON and OFF.

SPAN
8753 Command Description Range Query Response
SPAN<num>[HZ|DB] Sets the stimulus

span value. If a list
frequency segment is
being edited, sets the
span of the list
segment.

Stimulus range. For
frequency or power
sweeps, refer to
"Preset State and
Memory Allocation,"
in your analyzers

<num><LF

566

users guide. For CW
time: 0 to 24 hours.
For frequency sweep,
transform on: ±
1/frequency step. For
CW time sweep,
transform on: ±1/time
step.

PNA SCPI Equivalent - Notes
SENS:FREQ:SPAN Read-Write the frequency span of the

analyzer.
SENS:SEGM:FREQ:SPAN Read-Write the frequency span for the

specified segment.
PNA COM Equivalent - Notes
Frequency Span Property Sets or returns the frequency span of all

measurements in a channel
 or
 Sets or returns the frequency span of a
specified sweep segment.

SRE
8753 Command Description Range Query Response
SRE<num> Service request

enable. A bit set in
<num> enables the
corresponding bit in
the status byte to
generate an SRQ.

integers 0255 <num><LF

PNA SCPI Equivalent - Notes
*SRE Enables bits in the service request register.

Replace "SRE" with "*SRE".
PNA COM Equivalent - Notes

No equivalent command at present.

SSEG
8753 Command Description Range Query Response
SSEG<num> Selects the desired

segment of the
frequency list for a list
frequency sweep.
See also "ASEG".

Integers 130 <num><LF

PNA SCPI Equivalent - Notes
SENS:SEGM Read-Write the specified segment ON or

OFF.
SENS:SWE:TYPE The segment will not be turned on until the

sweep type is set to "SEGMent" sweep with
this command.

PNA COM Equivalent - Notes
Segments Collection Segment collection object.

STAR
8753 Command Description Range Query Response
STAR<num>[HZ|DB] Sets the start Stimulus range. For <num><LF

567

stimulus value. If a
list frequency
segment is being
edited, sets the start
of the list segment.

frequency or power
sweeps, refer to
"Preset State and
Memory Allocation,"
in your analyzers
users guide. For CW
time: 0 to 24 hours.
For frequency sweep,
transform on: ±
1/frequency step. For
CW time sweep,
transform on: ±1/time
step.

PNA SCPI Equivalent - Notes
SENS:SWE:TYPE Read-Write the start frequency of the

analyzer.
SENS:SEGM:FREQ:STAR Read-Write the start frequency for the

specified segment.
PNA COM Equivalent - Notes
Start Frequency Property Sets or returns the start frequency of all

measurements in a channel
 or
 Sets or returns the start frequency of a
specified sweep segment.

STB?
8753 Command Description Range Query Response
STB? Query only. Outputs

the status byte in
ASCII format
(FORM4). Same as
OUTPSTAT.

N/A <num><LF

PNA SCPI Equivalent - Notes
*STB? Enables bits in the service request register.

Replace "STB?" with "*STB?".
PNA COM Equivalent - Notes

No equivalent command at present.

STOP
8753 Command Description Range Query Response
STOP<num>[HZ|DB] Sets the stop

stimulus value. If a
list frequency
segment is being
edited, sets the stop
of the list segment.

Stimulus range. For
frequency or power
sweeps, refer to
"Preset State and
Memory Allocation,"
in your analyzers
users guide. For CW
time: 0 to 24 hours.
For frequency sweep,
transform on: ±
1/frequency step. For
CW time sweep,
transform on: ±1/time
step.

<num><LF

568

PNA SCPI Equivalent - Notes
SENS:FREQ:STOP To Read-Write the stop frequency of the

analyzer.
SENS:SEGM:FREQ:STOP To Read-Write the stop frequency for the

specified segment.
PNA COM Equivalent - Notes
Stop Frequency Property Sets or returns the stop frequency of all

measurements in a channel
 or
 Sets or returns the stop frequency of a
specified sweep segment.

STOR
8753 Command Description Range Query Response
STOR<num> Stores the current

instrument state to
disk using the file
name provided by the
preceding
TITF<num>
command.

Integers 15 N/A

PNA SCPI Equivalent - Notes
MMEM:STOR:STAT Write-only to store the specified file.
PNA COM Equivalent - Notes
Save Method Saves a measurement state, calibration state,

or both.

SWE
8753 Command Description Range Query Response
SWEA Automatically selects

the fastest sweep
time based on the
current analyzer
settings for number of
points, IF bandwidth,
sweep mode,
averaging condition
and frequency span.

N/A N/A

SWET<num>[S] Sets the sweep time.
(Setting SWET0 is
equivalent to sending
the SWEA
command.)

086,400 s <num><LF

PNA SCPI Equivalent - Notes
SENS:SWE:TIME:AUTO Read-Write the automatic sweep time function

ON or OFF.
SENS:SWE:TIME Read-Write the time the analyzer takes to

complete one sweep.
PNA COM Equivalent - Notes
Sweep Time Property Sets the Sweep time of the analyzer. Setting

sweep time to 0 will result in the fastest
possible sweep time with the current settings.

SWR

569

8753 Command Description Range Query Response
SWR Selects the SWR

display format.
N/A <0|1>><LF

PNA SCPI Equivalent - Notes
CALC:FORM Read-Write the display format for the

measurement.
PNA COM Equivalent - Notes
Format Property Sets (or returns) the display format of the

measurement.

TALKLIST
8753 Command Description Range Query Response
TALKLIST Selects the talker

listener mode.
N/A <0|1>><LF

PNA SCPI Equivalent - Notes
No equivalent command at present.

PNA COM Equivalent - Notes
GPIBMode Property Selects the talker listener mode.

TAK
8753 Command Description Range Query Response
TAKRS Begins a receiver

calibration sweep
N/A N/A

PNA SCPI Equivalent - Notes
CALC:NORM:IMM Stores the selected measurements data to

that measurements divisor buffer for use by
the Normalization data processing algorithm.
This command is not compatible with ratioed
measurements such as S-parameters. It is
intended for receiver power calibration when
the selected measurement is of an unratioed
power type.

PNA COM Equivalent - Notes
DataToDivisor Method Stores the measurements data to the

measurements divisor buffer for use by the
Normalization data processing algorithm.
Normalization is currently supported only on
measurements of unratioed power, for
purpose of receiver power calibration.

TIT
8753 Command Description Range Query Response
TITL<$> Enters a new display

title.
48 characters max N/A

PNA SCPI Equivalent - Notes
DISP:WIND:TITL:DATA Read-Write data in the window title area.
PNA COM Equivalent - Notes
Title Property Writes or reads a custom title for the window.

8753 Command Description Range Query Response
TITF Titles the indicated <num>: 15 <$>: 10 N/A

570

file numbers. char. max.
TITP Titles the plot to disk

file.
10 characters max N/A

TITR Titles the indicated
internal register.

<num>: 15 <$>: 10
char. max.

N/A

TITREG Titles save/recall
registers 01 through
31. TITREG01
through TITREG05
are the same as
TITR1 through
TITR5.

<num>: 0131 <$>:
10 char. max.

N/A

TITSEQ Selects the sequence
to be titled.

<num>: 16 <$>: 10
char. max.

N/A

TITSQ Provides access to
the sequence title
functions.

N/A N/A

 Notes
These commands currently are not available
on PNA

TRACK
8753 Command Description Range Query Response
TRACK<ON|OFF> Turns marker search

tracking on and off.
N/A <0|1>><LF

PNA SCPI Equivalent - Notes
CALC:MARK:FUNC:TRAC Read-Write tracking capability for the

specified marker.
PNA COM Equivalent - Notes
Tracking Property Turns marker search tracking on and off.

TRL
8753 Command Description Range Query Response
TRLL1 Measures TRL

Line/match for Port 1
during a TRL/LRM 2-
port calibration.

N/A N/A

TRLL2 Measures TRL
Line/match for Port 2
during a TRL/LRM 2-
port calibration.

N/A N/A

TRLR1 Measures TRL S11
reflect during a
TRL/LRM 2-port
calibration.

N/A N/A

TRLR2 Measures TRL S22
reflect during a
TRL/LRM 2-port
calibration.

N/A N/A

571

TRLT Measures TRL thru
during a TRL/LRM 2-
port calibration.

N/A N/A

PNA SCPI Equivalent - Notes
SENS:CORR:COLL:METH Read-Write the calibration method.
SENS:CORR:COLL Write-only to measure the specified standard

from the selected calibration kit.
PNA COM Equivalent - Notes
SetCalInfo_Method Specifies the type of calibration to perform.
AcquireCalStandard2 Method Measures the specified standard from the

selected calibration kit.

TST?
8753 Command Description Range Query Response
TST? Query only. Causes a

self test and returns a
zero if the test is
passed.

N/A <num><LF>

PNA SCPI Equivalent - Notes
*TST? Returns the result of a complete self-test. An

ASCII 0 indicates no failures found.
PNA COM Equivalent - Notes

No equivalent command at present.

TSTP
8753 Command Description Range Query Response
TSTP<P1|P2> Selects test port 1 or

2 for non-S-
parameter
measurements.

N/A N/A

PNA SCPI Equivalent - Notes
SENS:SWE:SRCP Read-Write the source port when making non

S-parameter measurements. Has no effect on
S-parameter measurements.

PNA COM Equivalent - Notes
CreateMeasurement Method Create and display the measurement.

Method parameter allows one to select the
specific port.

TTL
8753 Command Description Range Query Response
TTLLPULS TTL normally high,

low pulse at end of
sweep.

N/A <0|1><L F >

TTLHPULS TTL normally low,
high pulse at end of

N/A <0|1><L F >

572

sweep.
PNA SCPI Equivalent - Notes
CONT:AUX:SWE (Read-Write) Specifies the event that will

cause the AUX IO Sweep End line (pin 11) to
go to a low (false) state. The line will return to
a high state after the appropriate calculations
are complete. This line is connected internally
to the Sweep End line of the Material Handler
IO.

PNA COM Equivalent - Notes
SweepEndMode Property (Read-Write) Specifies the event that will

cause the AUX IO Sweep End line (pin 11) to
go to a low (false) state. The line will return to
a high state after the appropriate calculations
are complete. This line is connected internally
to the Sweep End line of the Material Handler
IO.

USESENS
8753 Command Description Range Query Response
USESENSA
USESENSB

Selects the power
meter input being
used for a power
calibration

N/A N/A

PNA SCPI Equivalent - Notes
SOUR:POW:CORR:COLL Initiates a source power cal acquisition sweep

using the power sensor attached to the
specified channel (A or B) on the power
meter.

PNA COM Equivalent - Notes
AcquirePowerReadings Method Initiates a source power cal acquisition

VELOFACT
8753 Command Description Range Query Response
VELOFACT<num> Enters the velocity

factor of the
transmission
medium.

0 to 10 <num><LF

PNA SCPI Equivalent - Notes
SENS:CORR:RVEL:COAX Read-Write the velocity factor to be used with

Electrical Delay and Port Extensions.
PNA COM Equivalent - Notes
Velocity Factor Property Sets the velocity factor to be used with

Electrical Delay and Port Extensions.

WAIT
8753 Command Description Range Query Response
WAIT Waits for a clean N/A N/A

573

sweep when used
with the OPC
command.

PNA SCPI Equivalent - Notes
*WAI Prohibits the instrument from executing any

new commands until all pending overlapped
commands have been completed.

PNA COM Equivalent - Notes
No equivalent command at present.

WID
8753 Command Description Range Query Response
WIDT<ON|OFF> Turns the bandwidth

search on and off.
N/A <0|1><LF

WIDV<num> Enters the widths
search parameter.

Amplitude range. <num><LF

PNA SCPI Equivalent - Notes
 Step 1 CALC:MARK:BWID Turn ON bandwidth search. Also, can return

statistics.
 Step 2 CALC:MARK:FUNC:TRAC Turn marker tracking ON.
 Step 3 CALC:MARK:AOFF Turn OFF bandwidth search. This is

accomplished by turning all markers OFF.
Markers can also be turned OFF one at a time
with
CALCulate<cnum>:MARKer<mkr>[:STATe]
<ON|OFF>

PNA COM Equivalent - Notes
Step 1 Bandwidth Target Property Enter the bandwidth target value.
Step 2 Search Filter Bandwidth Method Turn ON bandwidth search.
Step 3 Tracking Property Turn marker tracking ON.
Get Filter Statistics Method The filter statistics can be returned with this

method.
DeleteAllMarkers Method Turn OFF bandwidth search. This is

accomplished by turning all markers OFF.
Markers can also be turned OFF one at a time
with DeleteMarker method.

574

Click a box to view process details:

Raw Measurement Data - Complex trace data which is ratioed if required by the parameter, such
as S11 or A/B. Otherwise it is raw receiver data, such as A or B. This data is averaged if
Averaging is ON. See Measurement Parameters

Standard Acquisition Data - Raw Complex Data resulting from measuring calibration standards
or recalling a calibration. See Measurement Calibration.

Error Term Data - Data that is calculated from Acquisition data using formulas which are
appropriate for the selected calibration method.

Error Correction - Error terms are applied to the raw measurement data if error correction is ON.
Otherwise this data is identical to Raw Measurement Data.

Divisor - Correction data resulting from a Receiver power calibration. See Receiver power
calibration

Normalization - If performing Receiver power correction, applies the "Divisor" correction data to
the measurement.

Trace Math - If turned ON, memory data is combined with measurement data using the selected
math function. Available functions are: Data+Mem, Data-Mem, Data*Mem, and Data/Mem. See
Math Operations.

Memory Data - Complex trace data resulting from a Data-To-Memory operation. Each
measurement can have one memory trace. The memory data parallels the measurement data
through the remaining post processing blocks. For example, turning smoothing ON will smooth
both the measurement and memory traces.

575

Gating - If turned ON, Filter Gating is applied to the measurement data. The gates are used to
select regions of the trace where a subsequent transform will be applied. See Gating.

Phase Correction - If turned ON, applies electrical delay, phase offset, and port extensions.
These are all separate features that are controlled individually. See Phase Measurement
Accuracy.

Time Domain - If turned ON, transforms the data from the frequency domain to the time domain.
See Time Domain

Formatter - Complex data is converted into scalar data formats for screen display and remote
access. For smoothed data, request the data in the same format as the displayed data. See Data
Format

Memory Result Data- Memory data is formatted and available for remote access from access
point 1. To get smoothed data, request the data in the same format as the displayed data. The
data will then come from access point 2.

Measurement Result Data - Measurement data is formatted and available for remote access
from access point 1. To get smoothed data, request the data in the same format as the displayed
data. The data will then come from access point 2.

Smoother - If turned ON, removes discontinuities in the measurement and memory trace. See
Smoothing.

Display - Displays the processed measurement and / or memory data in the format of your
choice. If remotely requested data is the same format as the displayed data, the requested data
comes from this buffer.

Using Macros

Macros are executable programs that you write, load into the analyzer, and then run from the
analyzer. You can have up to 12 macros set up to run on the analyzer.
� How to Setup Macros

� How to Run Macros

� Macro Example

How to Setup Macros
Use one of the following methods to access the Macro Setup dialog box:

576

1.

2. +
In the Macro Setup dialog box:
Click on a blank line below the last entry. (There may be NO entry.)
Click Edit
In the Macro Title box, type a descriptive title for your macro.
Click Browse.
Change Files of Type
Find and click your macro file
Click OK
Click OK on the Macro Setup dialog box.
Learn more about using the front panel interface

Macro Setup dialog box help
Allows you to create a set of 12 macros so that you can launch other programs from within the PNA
application.

To add a Macro, select a blank line then click Edit

Macro Title Shows the titles that appear in the active entry toolbar when you press the Macro key.
These titles are associated with the executable files and should be descriptive so you can easily
identify them. For example, if you wanted to launch the Agilent Home Page, you could title the
executable "Agilent Home."
Macro Executable Lists the complete path to the executable file. To follow the example of
launching the Agilent PNA Series Home Page, the path to the executable could be "C:\Program
Files\Internet Explorer\iexplore.exe.
Macro Runstring Parameters Lists parameters that are passed to the program referenced in the
executable file. Again following the example of launching the PNA Series Home Page, you could
assign the runstring parameters "http://www.agilent.com/find/pna"
Edit Invokes the Macro Edit dialog box.
Delete Deletes the selected macro.
Up Allows you to reorder the macros, moving the selected macro up one line. For the 12 possible

577

macros there are 12 lines, indicating the order that they appear in the active entry toolbar when you
press the Macro key. Since there are four titles that can be shown at one time in the toolbar, when
you repeatedly press the Macro key, the toolbar changes the macro titles to the next set of four
macro titles.
Down Moves the selection down one line in the list of macros.

Macro Edit dialog box help
Macro Title Allows you to modify the title that appears in the active entry toolbar.
Macro Executable Allows you to modify the complete path to the macro executable file.
Browse Allows you to look through drives and directories, to locate the macro executable file and
establish the complete path to the file.
Macro run string parameters Allows you to modify the parameters that are passed to the program
referenced in the executable file.
See Macro Setup dialog box

How to Run Macros
Use one of the following methods to access the Macro Setup dialog box:

1.

2. +
In the Macro Setup dialog box:
1. Click on a blank line below the last entry. (There may be NO entry.)
2. Click Edit
3. In the Macro Title box, type a descriptive title for your macro.
4. Click Browse.
5. Change Files of Type
6. Find and click your macro file
7. Click OK
8. Click OK on the Macro Setup dialog box.

Learn more about using the front panel interface

Macro Example

578

The following is an example Visual Basic Scripting (vbs) program that you can copy, install, and
run on your PNA

Note: Print these instructions if viewing in the analyzer. This topic will be covered by the Macro
Setup dialog box.

1. Copy the following code into a Notepad file.
2. Save the file on the analyzer hard drive in the C:\Documents folder. Name the file FilterTest.vbs
3. Close Notepad
4. Setup the macro in the PNA
5. Run the macro

Notepad is a text editor that is installed on all PCs that use a Microsoft Operating system. To
launch Notepad on the analyzer:

1. Click View, then click Title Bars
2. Click the Start button on the windows taskbar
3. Point to Programs, Accessories.
4. Click Notepad

’Start copying here
 ’This program creates a S21 measurement, with Bandwidth
 ’markers for testing a 175MHz Bandpass filter
 ’It is written in VBscript using COM commands

 Set PNA = CreateObject("AgilentPNA835x.Application")
 PNA.Preset
 Set chan=PNA.activechannel
 Set meas=PNA.activemeasurement
 Set limts = meas.LimitTest
 Set trce = PNA.ActiveNAWindow.ActiveTrace

 meas.ChangeParameter "S21",1
 chan.StartFrequency = 45e6
 chan.StopFrequency = 500e6
 trce.ReferencePosition = 8
 PNA.TriggerSignal = 3

 ’Do Test
 for t=1 to 5
 call measure
 call compare
 next
 msgbox("Done Testing")

 sub measure
 msgbox("Connect Device " & t & " and press OK")
 PNA.ManualTrigger True
 meas.SearchFilterBandwidth
 end sub

 sub compare
 BW = meas.FilterBW
 if bw>6.5e7 then msgbox("Failed BW: " & BW)
 Loss = meas.FilterLoss
 if loss>5 then msgbox("Failed Loss: " & Loss)
 end sub
 ’End copying here

